【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=3571

【题目大意】

  给出一张二分图,每条边上有a,b两个值,求完美匹配,
  使得suma*sumb最小。

【题解】

  把方案看成一个二维点,x=sum(a),y=sum(b)
  答案一定在下凸壳上,找到l,r两个点,l是x最小的,r是y最小的
  然后递归调用work(l,r):找到离该直线最远的点,那个点一定在下凸壳上
  将边权设为(a,b)叉积(l-r),求出最小完美匹配就是那个点mid
  因为叉积计算的时候包含符号,(suma,sumb)与直线的叉积最小就是三角形的面积最大,
  因而就是最远点,总和的叉积最小等价于叉积最小完美匹配。
  然后递归work(l,mid),work(mid,r)
  就能够枚举下凸壳上所有的点了。

【代码】

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL;
const int N=310;
const LL INF=0x3f3f3f3f3f3f3f3f;
int nx,ny; //两边的点数
LL g[N][N]; //二分图描述
int linker[N];//y中各点匹配状态
LL lx[N],ly[N];//x,y中的点标号
int n;
LL slack[N];
bool visx[N],visy[N];
LL ans=INF;
int T,a[N][N],b[N][N];
struct P{
int x,y;
P(){x=y=0;}
P(int _x,int _y){x=_x;y=_y;}
P operator-(const P&rhs){return P(x-rhs.x,y-rhs.y);}
}l,r;
LL cross(P a,P b){return (LL)a.x*b.y-(LL)a.y*b.x;}
bool DFS(int x){
visx[x]=1;
for(int y=0;y<ny;y++){
if(visy[y])continue;
int tmp=lx[x]+ly[y]-g[x][y];
if(tmp==0){
visy[y]=true;
if(linker[y]==-1||DFS(linker[y])){
linker[y]=x;
return 1;
}
}else if(slack[y]>tmp)slack[y]=tmp;
}return 0;
}
P KM(){
P p;
memset(linker,-1,sizeof(linker));
memset(ly,0,sizeof(ly));
for(int i=0;i<nx;i++){
lx[i]=-INF;
for(int j=0;j<ny;j++)if(g[i][j]>lx[i])lx[i]=g[i][j];
}
for(int x=0;x<nx;x++){
for(int i=0;i<ny;i++)slack[i]=INF;
for(;;){
memset(visx,false,sizeof(visx));
memset(visy,false,sizeof(visy));
if(DFS(x))break;
LL d=INF;
for(int i=0;i<ny;i++)if(!visy[i]&&d>slack[i])d=slack[i];
for(int i=0;i<nx;i++)if(visx[i])lx[i]-=d;
for(int i=0;i<ny;i++){
if(visy[i])ly[i]+=d;
else slack[i]-=d;
}
}
}LL res=0;
for(int i=0;i<ny;i++)if(linker[i]!=-1){
p.x+=a[linker[i]][i];
p.y+=b[linker[i]][i];
}res=(LL)p.x*p.y;
if(res<ans)ans=res;
return p;
}
void work(P l,P r){
P t=l-r;
for(int i=0;i<n;i++)for(int j=0;j<n;j++)g[i][j]=-cross(P(a[i][j],b[i][j]),t);
P mid=KM();
if(cross(mid-l,r-mid)>0)work(l,mid),work(mid,r);
}
int main(){
scanf("%d",&T);
while(T--){
scanf("%d",&n); ans=INF;
for(int i=0;i<n;i++)for(int j=0;j<n;j++)scanf("%d",&a[i][j]);
for(int i=0;i<n;i++)for(int j=0;j<n;j++)scanf("%d",&b[i][j]);
nx=ny=n;
for(int i=0;i<n;i++)for(int j=0;j<n;j++)g[i][j]=-a[i][j]; l=KM();
for(int i=0;i<n;i++)for(int j=0;j<n;j++)g[i][j]=-b[i][j]; r=KM();
work(l,r);
printf("%lld\n",ans);
}return 0;
}

BZOJ 3571 [Hnoi2014]画框(最小乘积完美匹配)的更多相关文章

  1. bzoj3571: [Hnoi2014]画框 最小乘积匹配+最小乘积XX总结,

    思路大概同bzoj2395(传送门:http://www.cnblogs.com/DUXT/p/5739864.html),还是将每一种匹配方案的Σai看成x,Σbi看成y,然后将每种方案转化为平面上 ...

  2. bzoj 3571: [Hnoi2014]画框

    Description 小T准备在家里摆放几幅画,为此他买来了N幅画和N个画框.为了体现他的品味,小T希望能合理地搭配画与画框,使得其显得既不过于平庸也不太违和.对于第 幅画与第 个画框的配对,小T都 ...

  3. UVa 1349 (二分图最小权完美匹配) Optimal Bus Route Design

    题意: 给出一个有向带权图,找到若干个圈,使得每个点恰好属于一个圈.而且这些圈所有边的权值之和最小. 分析: 每个点恰好属于一个有向圈 就等价于 每个点都有唯一后继. 所以把每个点i拆成两个点,Xi  ...

  4. POJ 2404 Jogging Trails(最小权完美匹配)

    [题目链接] http://poj.org/problem?id=2404 [题目大意] 给出一张图,求走遍所有的路径至少一次,并且回到出发点所需要走的最短路程 [题解] 如果图中所有点为偶点,那么一 ...

  5. hdu1533 Going Home km算法解决最小权完美匹配

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  6. poj3565 Ants km算法求最小权完美匹配,浮点权值

    /** 题目:poj3565 Ants km算法求最小权完美匹配,浮点权值. 链接:http://poj.org/problem?id=3565 题意:给定n个白点的二维坐标,n个黑点的二维坐标. 求 ...

  7. UVA 1349 Optimal Bus Route Design (二分图最小权完美匹配)

    恰好属于一个圈,那等价与每个点有唯一的前驱和后继,这让人想到了二分图, 把一个点拆开,点的前驱作为S集和点的后继作为T集,然后连边,跑二分图最小权完美匹配. 写的费用流..最大权完美匹配KM算法没看懂 ...

  8. uva 1411 Ants (权值和最小的完美匹配---KM算法)

    uva 1411 Ants Description Young naturalist Bill studies ants in school. His ants feed on plant-louse ...

  9. 紫书 例题11-10 UVa 1349 (二分图最小权完美匹配)

    二分图网络流做法 (1)最大基数匹配.源点到每一个X节点连一条容量为1的弧, 每一个Y节点连一条容量为1的弧, 然后每条有向 边连一条弧, 容量为1, 然后跑一遍最大流即可, 最大流即是最大匹配对数 ...

随机推荐

  1. js 合并多个对象 Object.assign

    Object.assign() 方法用于将所有可枚举属性的值从一个或多个源对象复制到目标对象.它将返回目标对象. var o1 = { a: 1 };var o2 = { b: 2 };var o3 ...

  2. new操作符(翻译自mozilla.org)

    翻译自:https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/new new操作符可以实例化一个用户自 ...

  3. 用例图(Use Case Diagram)

    用例图(Use Case Diagram) 执行者/参与者(Actor): 表示与您的应用程序或系统进行交互的用户.组织或外部系统.用一个小人表示. 用例(Use Case): 即系统具有的功能,在用 ...

  4. 【转】jpeg文件格式详解

    JPEG(Joint Photographic Experts Group)是联合图像专家小组的英文缩写.它由国际电话与电报咨询委员会CCITT(The International Telegraph ...

  5. C高级 跨平台协程库

    1.0 协程库引言 协程对于上层语言还是比较常见的. 例如C# 中 yield retrun, lua 中 coroutine.yield 等来构建同步并发的程序. 本文就是探讨如何从底层实现开发级别 ...

  6. [New Learn]被嫌弃的app的一生

    1.简介 为什么叫被嫌弃的app的一生?致敬电影<被嫌弃的松子的一生>. 自学IOS东一锄西一镐的总感觉没有一个总的概念,还是多看看官网吧,先看一下一个app的整个生命周期,本文主要是翻译 ...

  7. Leetcode 之Largest Rectangle in Histogram(40)

    又是一道构思巧妙的题,暴力求解复杂度太高,通过构造一个递增栈来解决:如果当前元素小于栈顶元素,则说明栈内已经构成一个 递增栈,则分别计算以每个元素为最低值的面积:反之,则入栈. int largest ...

  8. Nginx配置问题总结

    1.Nginx直接下载解压,有个nginx.exe文件,双击即开启Nginx服务(windows系统下).默认是80端口. 若服务无法启动,考虑以下三方面问题: (1)端口号80是否被占用 (2)防火 ...

  9. chattr命令的用法

    chattr (配置文件隐藏属性)[root@www ~]# chattr [+-=][ASacdistu] 文件或目录名称选项与参数:+ :添加某一个特殊参数,其他原本存在参数则不动.- :移除某一 ...

  10. 跨域请求方式之Jsonp形式

    在浏览器端才有跨域安全限制一说,而在服务器端是没有跨域安全限制的. 在两个异构系统(开发语言不同)之间达到资源共享就需要发起一个跨域请求. 而浏览器的同源策略却限制了从一个源头的文档资源或脚本资源与来 ...