如果一个节点是$0$但它子树内有$1$那么无解,否则我们只需把那些是$1$但子树内没有其他$1$的节点(这些区间是被定位的区间)都访问一遍即可

根据ZKW线段树定位区间的过程,可以发现一段(从左到右)连续的右儿子+左儿子序列确定了一个区间

所以对每个右儿子$[l,r]$,连$[0,\infty)$向$[r+1,x]$的节点,对每个左儿子$[l,r]$,连$[0,+\infty)$向$[r+1,x]$的左儿子,再对那些被定位到的点拆点连$[1,\infty)$,跑最小流即可

但这样边数太多,考虑优化,建$n$个附加点,对于左儿子$[l,r]$,从附加点$l$连向它再连向附加点$r+1$,但这样会产生左儿子连到右儿子这种不合法情况,所以对左儿子和右儿子分别建$n$个附加点即可

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int inf=2147483647;
int h[24010],nex[128010],to[128010],cap[128010],M=1,S,T;
void ins(int a,int b,int c){
	M++;
	to[M]=b;
	cap[M]=c;
	nex[M]=h[a];
	h[a]=M;
}
void add(int a,int b,int c){
	ins(a,b,c);
	ins(b,a,0);
}
int dis[24010],q[24010];
bool bfs(){
	int head,tail,x,i;
	memset(dis,-1,sizeof(dis));
	head=tail=1;
	q[1]=S;
	dis[S]=0;
	while(head<=tail){
		x=q[head++];
		for(i=h[x];i;i=nex[i]){
			if(cap[i]&&dis[to[i]]==-1){
				dis[to[i]]=dis[x]+1;
				if(to[i]==T)return 1;
				q[++tail]=to[i];
			}
		}
	}
	return 0;
}
int cur[24010];
int dfs(int x,int flow){
	if(x==T)return flow;
	int us=0,i,t;
	for(i=cur[x];i&&flow;i=nex[i]){
		if(cap[i]&&dis[to[i]]==dis[x]+1){
			t=dfs(to[i],min(flow,cap[i]));
			cap[i]-=t;
			cap[i^1]+=t;
			us+=t;
			flow-=t;
			if(cap[i])cur[x]=i;
		}
	}
	if(us==0)dis[x]=-1;
	return us;
}
int dicnic(){
	int ans=0;
	while(bfs()){
		memcpy(cur,h,sizeof(h));
		ans+=dfs(S,inf);
	}
	return ans;
}
void add(int a,int b,int l,int r){
	if(l){
		add(S,b,l);
		add(a,T,l);
	}
	if(r!=inf)r-=l;
	add(a,b,r);
}
int tS,tT;
int minflow(){
	dicnic();
	add(tT,tS,0,inf);
	return dicnic();
}
int lp[4010],rp[4010],n,N;
int build(int l,int r,int f){
	int siz=0,t,mid;
	scanf("%d",&t);
	if(l<r){
		scanf("%d",&mid);
		siz=build(l,mid,0)+build(mid+1,r,1);
	}
	if(!t&&siz)throw"OwO";
	if(t){
		add(tS,N,0,inf);
		add(N,N+1,!siz,inf);
		add(N+1,tT,0,inf);
		if(f==1){
			add(rp[l],N,0,inf);
			if(r<n){
				add(N+1,rp[r+1],0,inf);
				add(N+1,lp[r+1],0,inf);
			}
		}
		if(f==0){
			add(rp[l],N,0,inf);
			add(lp[l],N,0,inf);
			if(r<n)add(N+1,lp[r+1],0,inf);
		}
		N+=2;
	}
	return siz+t;
}
int main(){
	scanf("%d",&n);
	try{
		S=1;
		T=2;
		tS=3;
		tT=4;
		for(int i=1;i<=n;i++){
			lp[i]=i+4;
			rp[i]=i+n+4;
		}
		N=rp[n]+1;
		build(1,n,-1);
		printf("%d",minflow());
	}catch(const char*s){
		puts(s);
	}
}

[UOJ217]奇怪的线段树的更多相关文章

  1. 「UNR#1」奇怪的线段树

    「UNR#1」奇怪的线段树 一道好题,感觉解法非常自然. 首先我们只需要考虑一次染色最下面被包含的那些区间,因为把无解判掉以后只要染了一个节点,它的祖先也一定被染了.然后发现一次染色最下面的那些区间一 ...

  2. [UOJ UNR#1]奇怪的线段树

    来自FallDream的博客,未经允许,请勿转载, 谢谢. 原题可以到UOJ看,传送门 如果存在一个点是白的,却有儿子是黑的,显然无解. 不然的话,只要所有黑色的“黑叶子”节点,即没有黑色的儿子的节点 ...

  3. UOJ 217 奇怪的线段树

    http://uoj.ac/problem/217 题意就不X了,思路在这: 居然一开始把sap里面的mn设置为inf了,我是傻逼.. #include<cstdio> #include& ...

  4. [UOJ] #217. 【UNR #1】奇怪的线段树

    题解见大佬博客 我的丑陋代码: #include<cstdio> #include<cstring> #include<cstdlib> inline int re ...

  5. 【vijos】1750 建房子(线段树套线段树+前缀和)

    https://vijos.org/p/1750 是不是我想复杂了.... 自己yy了个二维线段树,然后愉快的敲打. 但是wa了两法.......sad 原因是在处理第二维的更新出现了个小问题,sad ...

  6. POJ2374 Fence Obstacle Course 【线段树】

    题目链接 POJ2374 题解 题意: 给出\(n\)个平行于\(x\)轴的栅栏,求从一侧栅栏的某个位置出发,绕过所有栅栏到达另一侧\(x = 0\)位置的最短水平距离 往上说都是线段树优化dp 我写 ...

  7. B3038 上帝造题的七分钟2 线段树

    这就是一道变得比较奇怪的线段树,维护每个区间的最大值和区间和,然后关键在于每次取根号的话数值下降的特别快,不用几次就都是1了,所以每次暴力单点修改,然后直接找区间最大值,假如区间最大值是1的话,就直接 ...

  8. 2018.07.25 bzoj3878: [Ahoi2014&Jsoi2014]奇怪的计算器(线段树)

    传送门 线段树综合. 让我想起一道叫做siano" role="presentation" style="position: relative;"&g ...

  9. CF914D Bash and a Tough Math Puzzle 线段树+gcd??奇怪而精妙

    嗯~~,好题... 用线段树维护区间gcd,按如下法则递归:(记题目中猜测的那个数为x,改动次数为tot) 1.若子区间的gcd是x的倍数,不递归: 2.若子区间的gcd是x的倍数,且没有递归到叶子结 ...

随机推荐

  1. 【洛谷 P2761】 软件补丁问题(状态压缩,最短路)

    题目链接 第四题. 初看题目很懵,网络流这么厉害的吗,毫无头绪去看题解.. 所以这和网络流有什么关系呢? 把规则用二进制保存下来,然后跑最短路救星了. 在线跑,离线连边太慢了. (以后干脆不管什么题直 ...

  2. 打印菱形(c语言)

    #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> int main() { // 定 ...

  3. ImageView设置边框 以及内部图片居中显示 在AndroidStudio中添加shape.xml文件

    效果如图 边框设置:shape文件 <shape xmlns:android="http://schemas.android.com/apk/res/android"> ...

  4. visual studio 个性化设置

    尼马visual studio 的注释建设的真垃圾 Ctrl+K+C Ctrl+K+U, 通过工具->选项->环境->键盘->命令包含中搜索“注释选定内容”,分配成 Ctrl+ ...

  5. 【bzoj4518】征途

    懒得推式子了,总之是个斜率优化…… 先化一下题目要求的式子,再写一下dp方程,然后就是很自然的斜率优化了qwq #include<bits/stdc++.h> #define N 3005 ...

  6. java web 资源文件读取

    前提:假设web应用test(工程名) webapps下面有一资源文件test.html 规则:在获取资源时一般使用的是相对路径,以符号/开头,而 / 代表什么取决于这个地址给谁使用.服务器使用时,/ ...

  7. 怎么删除Windows服务

    1,首先找到服务名字. 2,在cmd中进到c:下面 3,sc delete 名字. 删除成功

  8. vue 组件中数据传递

    //有种形式的传递:从父到子,从子到父,平行级别的传递//首先第一种:从父到子,用props属性绑定 //父级数据: new vue({ "el":"#app" ...

  9. jQuery 中的 unbind() 方法

    jQuery 中的 unbind() 方法是 bind() 方法的反向操作,从每一个匹配的元素中删除绑定的事件. 语法结构: unbind([type][, data]); type是事件类型,dat ...

  10. 2:django models Making queries

    这是后面要用到的类 class Blog(models.Model): name = models.CharField(max_length=100) tagline = models.TextFie ...