spoj COT2 - Count on a tree II
COT2 - Count on a tree II
http://www.spoj.com/problems/COT2/
You are given a tree with N nodes. The tree nodes are numbered from 1 to N. Each node has an integer weight.
We will ask you to perform the following operation:
- u v : ask for how many different integers that represent the weight of nodes there are on the path from u tov.
Input
In the first line there are two integers N and M. (N <= 40000, M <= 100000)
In the second line there are N integers. The i-th integer denotes the weight of the i-th node.
In the next N-1 lines, each line contains two integers u v, which describes an edge (u, v).
In the next M lines, each line contains two integers u v, which means an operation asking for how many different integers that represent the weight of nodes there are on the path from u to v.
Output
For each operation, print its result.
Example
Input:
8 2
105 2 9 3 8 5 7 7
1 2
1 3
1 4
3 5
3 6
3 7
4 8
2 5
7 8
Output:
4
4
题意:问树上两点间有多少不同的权值
树上莫队
开始狂T,发现自己竟是按节点编号划分的块!!
dfs分块。。
#include<cmath>
#include<cstdio>
#include<algorithm>
using namespace std;
#define N 40001
#define M 100001
int n,m,siz,tmp;
int hash[N],key[N];
int front[N],to[N*],nxt[N*],tot;
int fa[N],deep[N],id[N],son[N],bl[N],block[N];
bool vis[N];
int sum[N],ans[M];
struct node
{
int l,r,id;
bool operator < (node p) const
{
if(block[l]!=block[p.l]) return block[l]<block[p.l];
return block[r]<block[p.r];
}
}e[M];
int read(int &x)
{
x=; char c=getchar();
while(c<''||c>'') c=getchar();
while(c>=''&&c<='') { x=x*+c-''; c=getchar(); }
}
void add(int x,int y)
{
to[++tot]=y; nxt[tot]=front[x]; front[x]=tot;
to[++tot]=x; nxt[tot]=front[y]; front[y]=tot;
}
void dfs(int x)
{
son[x]++;
for(int i=front[x];i;i=nxt[i])
{
if(to[i]==fa[x]) continue;
deep[to[i]]=deep[x]+;
fa[to[i]]=x;
dfs(to[i]);
son[x]+=son[to[i]];
}
}
void dfs2(int x,int top)
{
id[x]=++tot;
bl[x]=top;
block[x]=(tot-)/siz+;
int y=;
for(int i=front[x];i;i=nxt[i])
{
if(to[i]==fa[x]) continue;
if(son[to[i]]>son[y]) y=to[i];
}
if(!y) return;
dfs2(y,top);
for(int i=front[x];i;i=nxt[i])
{
if(to[i]==fa[x]||to[i]==y) continue;
dfs2(to[i],to[i]);
}
}
void point(int u)
{
if(vis[u]) tmp-=(!--sum[hash[u]]);
else tmp+=(++sum[hash[u]]==);
vis[u]^=;
}
void path(int u,int v)
{
while(u!=v)
{
if(deep[u]>deep[v]) point(u),u=fa[u];
else point(v),v=fa[v];
}
}
int get_lca(int u,int v)
{
while(bl[u]!=bl[v])
{
if(deep[bl[u]]<deep[bl[v]]) swap(u,v);
u=fa[bl[u]];
}
return deep[u]<deep[v] ? u : v;
}
int main()
{
read(n);read(m); siz=sqrt(n);
for(int i=;i<=n;i++) read(key[i]),hash[i]=key[i];
sort(key+,key+n+);
key[]=unique(key+,key+n+)-(key+);
for(int i=;i<=n;i++) hash[i]=lower_bound(key+,key+key[]+,hash[i])-key;
int x,y;
for(int i=;i<n;i++)
{
read(x); read(y);
add(x,y);
}
tot=;
dfs();
dfs2(,);
for(int i=;i<=m;i++)
{
read(e[i].l); read(e[i].r);
e[i].id=i;
}
sort(e+,e+m+);
int L=,R=,lca;
for(int i=;i<=m;i++)
{
if(id[e[i].l]>id[e[i].r]) swap(e[i].l,e[i].r);
path(L,e[i].l);
path(R,e[i].r);
lca=get_lca(e[i].l,e[i].r);
point(lca);
ans[e[i].id]=tmp;
point(lca);
L=e[i].l; R=e[i].r;
}
for(int i=;i<=m;i++) printf("%d\n",ans[i]);
}
spoj COT2 - Count on a tree II的更多相关文章
- SPOJ COT2 - Count on a tree II(LCA+离散化+树上莫队)
COT2 - Count on a tree II #tree You are given a tree with N nodes. The tree nodes are numbered from ...
- SPOJ COT2 Count on a tree II(树上莫队)
题目链接:http://www.spoj.com/problems/COT2/ You are given a tree with N nodes.The tree nodes are numbere ...
- SPOJ COT2 Count on a tree II (树上莫队)
题目链接:http://www.spoj.com/problems/COT2/ 参考博客:http://www.cnblogs.com/xcw0754/p/4763804.html上面这个人推导部分写 ...
- spoj COT2 - Count on a tree II 树上莫队
题目链接 http://codeforces.com/blog/entry/43230树上莫队从这里学的, 受益匪浅.. #include <iostream> #include < ...
- SPOJ COT2 Count on a tree II 树上莫队算法
题意: 给出一棵\(n(n \leq 4 \times 10^4)\)个节点的树,每个节点上有个权值,和\(m(m \leq 10^5)\)个询问. 每次询问路径\(u \to v\)上有多少个权值不 ...
- SPOJ COT2 Count on a tree II (树上莫队,倍增算法求LCA)
题意:给一个树图,每个点的点权(比如颜色编号),m个询问,每个询问是一个区间[a,b],图中两点之间唯一路径上有多少个不同点权(即多少种颜色).n<40000,m<100000. 思路:无 ...
- 【SPOJ10707】 COT2 Count on a tree II
SPOJ10707 COT2 Count on a tree II Solution 我会强制在线版本! Solution戳这里 代码实现 #include<stdio.h> #inclu ...
- 【BZOJ2589】 Spoj 10707 Count on a tree II
BZOJ2589 Spoj 10707 Count on a tree II Solution 吐槽:这道题目简直...丧心病狂 如果没有强制在线不就是树上莫队入门题? 如果加了强制在线怎么做? 考虑 ...
- 【SPOJ】Count On A Tree II(树上莫队)
[SPOJ]Count On A Tree II(树上莫队) 题面 洛谷 Vjudge 洛谷上有翻译啦 题解 如果不在树上就是一个很裸很裸的莫队 现在在树上,就是一个很裸很裸的树上莫队啦. #incl ...
随机推荐
- POJ 1269 Intersecting Lines(直线求交点)
Description We all know that a pair of distinct points on a plane defines a line and that a pair of ...
- 【转】再谈PHP、Python与Ruby
原文链接:http://www.nowamagic.net/librarys/veda/detail/2504 一句话总结 简单地总结: 假如你想帮他尽快找个活儿,赚到钱,推荐PHP. 假如你想让他成 ...
- C语言 内存分配 地址 指针 数组 参数 实例解析
. Android源码看的鸭梨大啊, 补一下C语言基础 ... . 作者 : 万境绝尘 转载请注明出处 : http://blog.csdn.net/shulianghan/article/detai ...
- sping框架(3)— 使用spring容器
spring有两个核心接口:BeanFactory和ApplicationContext,其中ApplicationContext是BeanFactory的子接口.它们都可以代表spring容器,sp ...
- lintcode-153-数字组合 II
153-数字组合 II 给出一组候选数字(C)和目标数字(T),找出C中所有的组合,使组合中数字的和为T.C中每个数字在每个组合中只能使用一次. 注意事项 所有的数字(包括目标数字)均为正整数. 元素 ...
- 201621044079 韩烨 week11-作业11-多线程
作业11-多线程 参考资料 多线程参考文件 1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 2. 书面作业 本次PTA作业题集多线程 1. 源代码阅读:多线程程序 ...
- springMVC视图有哪些?-009
html,json,pdf等. springMVC 使用ViewResolver来根据controller中返回的view名关联到具体的view对象. 使用view对象渲染返回值以生成最终的视图,比如 ...
- 每天网络半小时(MAC数据包在哪里合并的)
ip_deliver_local函数中函数中完成合并 听过netfilter框架中也会 因为net_filter框架需要感知到第四层的信息,但是单个数据包是无法感知到这些信息的,所以需要在netfil ...
- 第29天:js-数组添加删除、数组和字符串相互转换
一.添加数组var arr=[1,3,5];arr.push(7,9);//添加7和9到数组arr后面,得到[1,3,5,7,9]1.push();可向数组末尾添加一个或多个元素,并返回新的长度.2. ...
- RT-thread内核之事件
一.事件控制块:在include/rtdef.h中 #ifdef RT_USING_EVENT /** * flag defintions in event */ #define RT_EVENT_F ...