'''
Numpy 和 Pandas 有什么不同 如果用 python 的列表和字典来作比较, 那么可以说 Numpy 是列表形式的,没有数值标签,而 Pandas 就是字典形式。Pandas是基于Numpy构建的,让Numpy为中心的应用变得更加简单。 要使用pandas,首先需要了解他主要两个数据结构:Series和DataFrame。
''' #todo 可以说 Numpy 是列表形式的,没有数值标签,而 Pandas 就是字典形式!! import pandas as pd
import numpy as np
s = pd.Series([1,3,6,np.nan,44,1])#输入的参数是一个列表
#此时s(series)包含了三个部分 1.索引 2.数据 3.数据类型dtype
print(s)
"""
0 1.0
1 3.0
2 6.0
3 NaN
4 44.0
5 1.0
dtype: float64
""" # DataFrame dates = pd.date_range('20160101',periods=6)
df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=['a','b','c','d']) print(df)
"""
a b c d
2016-01-01 -0.253065 -2.071051 -0.640515 0.613663
2016-01-02 -1.147178 1.532470 0.989255 -0.499761
2016-01-03 1.221656 -2.390171 1.862914 0.778070
2016-01-04 1.473877 -0.046419 0.610046 0.204672
2016-01-05 -1.584752 -0.700592 1.487264 -1.778293
2016-01-06 0.633675 -1.414157 -0.277066 -0.442545
""" # DataFrame是一个表格型的数据结构,它包含有一组有序的列,每列可以是不同的值类型(数值,字符串,布尔值等)。DataFrame既有行索引也有列索引, 它可以被看做由Series组成的大字典。
# 我们可以根据每一个不同的索引来挑选数据, 比如挑选 b 的元素:
# DataFrame 的一些简单运用 print(df['b'])#挑选b的元素
#此时返回的4各参数 是 1.行索引 2.数值 3.FREQ(频率)?? 4.dtype """
2016-01-01 -2.071051
2016-01-02 1.532470
2016-01-03 -2.390171
2016-01-04 -0.046419
2016-01-05 -0.700592
2016-01-06 -1.414157
Freq: D, Name: b, dtype: float64
""" # 我们在创建一组没有给定行标签和列标签的数据 df1: df1 = pd.DataFrame(np.arange(12).reshape((3,4)))
print(df1)
#此时没有给定index和column 默认返回0开始的索引
"""
0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
""" df2 = pd.DataFrame({'A': 1.,
'B': pd.Timestamp('20130102'),
'C': pd.Series(1, index=list(range(4)), dtype='float32'),
'D': np.array([3] * 4, dtype='int32'),
'E': pd.Categorical(["test", "train", "test", "train"]),
'F': 'foo'}) print(df2) """
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
"""
# 这种方法能对每一列的数据进行特殊对待. 如果想要查看数据中的类型, 我们可以用 dtype 这个属性:
# 这个相当于Excel的表格? print(df2.dtypes)#使用df2.dtype查看每一行的数据类型 """
df2.dtypes
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object
""" print(df2.index)
# 如果想看对列的序号: 相当于行号(行的名称) # Int64Index([0, 1, 2, 3], dtype='int64') print(df2.columns)#相当于查看列的名称 # Index(['A', 'B', 'C', 'D', 'E', 'F'], dtype='object') print(df2.values)#只返回df2的所有值,不返回行号和列号 """
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo'],
[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo']], dtype=object)
""" # 想知道数据的总结, 可以用 describe(): df2.describe()#使用describe相当于打个总结 返回count mean """
A C D
count 4.0 4.0 4.0
mean 1.0 1.0 3.0
std 0.0 0.0 0.0
min 1.0 1.0 3.0
25% 1.0 1.0 3.0
50% 1.0 1.0 3.0
75% 1.0 1.0 3.0
max 1.0 1.0 3.0
"""
print(df2.T) #转置数据 反转数据 #对数据的index(也就是行号)进行排序并且输出
print(df2.sort_index(axis=1, ascending=False)) #ascending 上升 """
F E D C B A
0 foo test 3 1.0 2013-01-02 1.0
1 foo train 3 1.0 2013-01-02 1.0
2 foo test 3 1.0 2013-01-02 1.0
3 foo train 3 1.0 2013-01-02 1.0
""" # 对数据 值 排序输出: print(df2.sort_values(by='B')) """
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
"""

出处:https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/3-1-pd-intro/

pandas主要的两个数据结构series,dataframe

可以说numpy是列表形式的,没有数据标签,pandas是字典类型的,表格形式的dateframe!!

s = pd.Series([1,3,6,np.nan,44,1])#输入的参数是一个列表   输出包含了三个部分 1.索引 2.数据 3.数据类型dtype


df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=['a','b','c','d'])  相当于生成了一个表格,行是index 列是columns

df2 = pd.DataFrame({'A': 1.,
'B': pd.Timestamp('20130102'),
'C': pd.Series(1, index=list(range(4)), dtype='float32'),
'D': np.array([3] * 4, dtype='int32'),
'E': pd.Categorical(["test", "train", "test", "train"]),
'F': 'foo'})

这是创建的第二种形式,可以看到是按照每列每列的建造,非常的方便啊!在训练神经结构的时候对数据处理的时候起到了很大的作用

dateframe.index 返回行的名称

dateframe.columes 返回列的名称

dateframe.values 返回的只有值

dateframe.describe 打个总结,在预测问题上,对生成的数据进行总结

dateframe.T 转置翻转数据

dateframe.sort_index

dateframe.sort_values  都可以起到排序的作用

pandas的学习1-基本介绍的更多相关文章

  1. 人工智能深度学习Caffe框架介绍,优秀的深度学习架构

    人工智能深度学习Caffe框架介绍,优秀的深度学习架构 在深度学习领域,Caffe框架是人们无法绕过的一座山.这不仅是因为它无论在结构.性能上,还是在代码质量上,都称得上一款十分出色的开源框架.更重要 ...

  2. iOS学习之NSBundle介绍和使用

    iOS学习之NSBundle介绍和使用 http://blog.csdn.net/totogo2010/article/details/7672271 新建一个Single View Applicat ...

  3. ASP.NET Core Web开发学习笔记-1介绍篇

    ASP.NET Core Web开发学习笔记-1介绍篇 给大家说声报歉,从2012年个人情感破裂的那一天,本人的51CTO,CnBlogs,Csdn,QQ,Weboo就再也没有更新过.踏实的生活(曾辞 ...

  4. Oracle GoldenGate学习之Goldengate介绍

    Oracle GoldenGate学习之Goldengate介绍 (2012-10-02 17:07:27) 标签: 检查点 数据传输 队列 进程 分类: Goldengate Goldengate介 ...

  5. pandas的学习总结

    pandas的学习总结 作者:csj更新时间:2017.12.31 email:59888745@qq.com 说明:因内容较多,会不断更新 xxx学习总结: 回主目录:2017 年学习记录和总结 1 ...

  6. JMeter学习工具简单介绍

    JMeter学习工具简单介绍   一.JMeter 介绍 Apache JMeter是100%纯JAVA桌面应用程序,被设计为用于测试客户端/服务端结构的软件(例如web应用程序).它可以用来测试静态 ...

  7. 《从0到1学习Flink》—— 介绍Flink中的Stream Windows

    前言 目前有许多数据分析的场景从批处理到流处理的演变, 虽然可以将批处理作为流处理的特殊情况来处理,但是分析无穷集的流数据通常需要思维方式的转变并且具有其自己的术语(例如,"windowin ...

  8. Java并发包下锁学习第一篇:介绍及学习安排

    Java并发包下锁学习第一篇:介绍及学习安排 在Java并发编程中,实现锁的方式有两种,分别是:可以使用同步锁(synchronized关键字的锁),还有lock接口下的锁.从今天起,凯哥将带领大家一 ...

  9. pandas库学习笔记(二)DataFrame入门学习

    Pandas基本介绍——DataFrame入门学习 前篇文章中,小生初步介绍pandas库中的Series结构的创建与运算,今天小生继续“死磕自己”为大家介绍pandas库的另一种最为常见的数据结构D ...

随机推荐

  1. Camtasia中对录制视频进行编辑——音效

    市场上有很多的视频处理软件,形形色色的软件往往会使人眼花缭乱,而对于那些短视频的制作者来说,拥有一款好的视频处理软件会让自己的视频收获更多的点赞.那么今天我便给大家推荐一款同时具有录屏和编辑视频功能的 ...

  2. C++ cout格式化输出完全攻略

    写算法题的时候突然发现自己忘记基本的C++:cout格式化输出了,赶紧拉出以前的C++学习笔记重新看一看. 部分内容来自教程:C语言中文网(一个很棒的网站) 有时希望按照一定的格式进行输出,如按十六进 ...

  3. 使用zabbix监控Jenkins

    一.监控架构图 二.实现思路 在 Jenkins 上安装 Metrics 插件,使 Jenkins 暴露 metrics api: 编写python代码从api抓取数据,并将数据解析为zabbix可以 ...

  4. A:与指定数字相同的数的个数

    总时间限制:  1000ms 内存限制:  65536kB 描述 输出一个整数序列中与指定数字相同的数的个数. 输入 输入包含三行:第一行为N,表示整数序列的长度(N <= 100):第二行为N ...

  5. Python学习第四天----模块儿导入

    1.命名空间 模块儿的名字加上文件的名字,就是命名空间. python如何区分一个普通的文件夹和一个包的? 在一个文件夹下有一个特定的文件__init__.py,此时这个文件夹就是一个包.(前后各两个 ...

  6. 02-Python里字符串的常用操作方法--split()函数和join()函数

    1.split() --分割,返回一个列表, 会丢失分割字符 实例: my_str = 'you and me and he' list01 = my_str.split('and') list02 ...

  7. badboy下载

    最近新接触了badboy软件,以下是百度网盘链接,有需要可以下载. 链接:https://pan.baidu.com/s/1O4oIhx-twcaMA_fDzRQPHg提取码:7i44 二维码:

  8. 不是程序员,代码也不能太丑!python官方书写规范:任何人都该了解的 pep8

    不是程序员,代码也不能太丑!python官方书写规范:任何人都该了解的 pep8 简介:为什么要强调 书写规范 ?这其实并不关乎"美丑",而是为了 更高的效率(代码阅读.开发.维护 ...

  9. 文艺splay,占坑等着填

    昨天CF上去就A了前三道题,然后自闭罚坐一个小时什么也没写出来23333.似乎D题人均wa3发就很烦.还是肤浅了 今天精神状态不太好,可能是晚睡的缘故,那不如明天一起写了算了 蹲一波大选结果,蹲一波s ...

  10. 第8.2节 Python类的__init__方法深入剖析:构造方法案例详解

    前面一节介绍了构造方法定义的语法,并进行了语法解释说明,本节将通过案例来说明构造方法参数传递及返回值的情况. 一.    案例说明 本节定义一个汽车类,它有四个实例变量:wheelcount, pow ...