Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels:

一旦退化模型被定义,下一步就是使用公式表示能量函数(energy function,也可以称为目标函数).通过MAP(Maximum A Posterriori) probability, 能量函数能够被给出:

$min_{x}\frac{1}{2\sigma^{2}}||\textbf{y} - (x\downarrow_{s})\otimes \textbf{k}||^{2} + \lambda \Phi(x)$

其中$\frac{1}{2\sigma^{2}}||\textbf{y} - (x\downarrow_{s})\otimes \textbf{k}||^{2}$ 是数据保真项或似然项,它由退化函数决定,$\Phi(x)$是一个正则化项或先验项,其中$\lambda$是正则化系数;

对于判别学习方法(discriminative learning method) ,前向传播模型恰恰对应了一个能量函数,退化模型被训练成对的高分辨率和低分辨率的图像对隐式的定义。这解释了为什么现在DNN-based SISR方法训练在双三次退化对于真实图像表现很差。

为了求出上面的式子,我们首先采用变量分割技术引入一个辅助变量$\textbf{z}$,得到下式这个相等的优化公式:

$\hat{x} = argmin_{x} \frac{1}{2\sigma^{2}}||\textbf{y} - \textbf{z} \otimes \textbf{k}||^{2} + \lambda \Phi(x)$

$subject to \textbf{z} = \textbf{x}\downarrow_{s}$

我们处理上式使用半二次分割(half quadratic splitting, HQS)算法,注意其他算法比如ADMM也能够被使用。

一般的,HQS最小化这个涉及一个增加的半二次惩罚项问题,来处理上式。目标函数写为:

$L_{\mu}(\textbf{x},\textbf{z}) = \frac{1}{2\sigma^{2}}||\textbf{y} - \textbf{z} \otimes \textbf{k}||^{2} + \lambda \Phi(x) + \frac{\mu}{2}||\textbf{z} - \textbf{x}\downarrow_{s}||^{2} $

其中 $\mu$ 是一个惩罚参数,一个非常大的$\mu$会强迫$\textbf{z}$近似相等于$\textbf{x}\downarrow_{s}$,通常,$\mu$在接下来的迭代求解过程中以非下降阶(non-descending order)的形式变化。

$z$和$x$ 可以看作是一个交替最小化问题,使用下面两个公式表示:

$\textbf{z}_{k+1} =$ argmin$_{\textbf{z}}||y - \textbf{z} \otimes \textbf{k}||^{2} + \mu\sigma^{2}||\textbf{z} - \textbf{x}_{k}\downarrow_{s}||^{2}$(7)

$\textbf{x}_{k+1}$ = argmin$_{\textbf{x}} \frac{\mu}{2}|| \textbf{z}_{k+1} - \textbf{x}\downarrow_{s} ||^{2} + \lambda \Phi(x)$

特别地,通过假设卷积是在圆形边界条件下进行的,Eqn(7)具有快速闭合形式的解法:

$\textbf{z}_{k+1} = \textit{F}^{-1} (\frac{\bar{\textit{F}(\textbf{k})}\textit{F}(\textbf{y}) + \mu\sigma^{2} \textit{F}(x_{k}\downarrow_{s})}{\bar{\textit{F}(\textbf{k})}\textit{F}(\textbf{k}) + \mu \sigma^{2}})$


Learning Deep CNN Denoiser Prior for Image Restoration:

Method:

--可以帮助噪声先验(denoiser prior),which作为基于模型的最优化方法的其中一个模块来解决这些逆问题(e.g., deblurring).

--噪声先验通过判别式学习方法(discriminative learning method)获得;

So, 结合上面两点,==》通过CNN训练一个噪声器,加入到基于模型的最优化方法来解决其他的逆问题;

变量分离技术的帮助下,我们可以同时使用两种方法的各自优点;

变量分割技术(variable spitting techniques):

变量分离技术(variable splitting technique),如ADMM(alternating direction method of multipliers ),HQS(half quadratic splitting)方法,使得可以分别处理保真项(fidelity term)和正则项(regularization term),其中正则项仅对应于去噪的子问题。因此,可以在基于模型的优化方法中使用discriminative denoisers,本文的目标在于训练一系列快速高效的discriminative denoisers,并把它们用于基于模型优化的方法中,解决求逆问题。不使用MAP相关方法,而是使用CNN学习denoisers。

(也可以理解为基于模型的方法一般需要反复迭代去解这个公式,而基于判别学习的方法则通过损失函数去学习先验参数。这里可以将两者进行结合,正则项可以对应于一个去噪的子问题,这个子问题可以通过判别式学习的去噪器去获得,从而带来图像先验,使得基于模型的方法可以快速工作)

贡献:

-训练出一系列CNN denoisers。使用变量分离技术,强大的denoisers可以为基于模型的优化方法带来图像先验。

-学习到的CNN denoisers被作为一个模块部分插入基于模型的优化方法中,解决其他的求逆问题。

半二次方分裂 Half Quadratic Splitting (HQS)

$\hat{x}=\left. arg \text{ }min \right|_{x} \frac{1}{2}|| y-H x||^{2}+\lambda \Phi(x) \text{ }\text{ }\text{ }\text{ }\text{ }\text{ }(2)$

引入辅助变量$z, z = x$,HQS尝试最小化下面的成本函数:

$L_{\mu}(x,z)=\frac{1}{2}|| y-H x||^{2}+\lambda\Phi(z)+\frac{\mu}{2}||z-x||^{2}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }(5)$

$\mu$ 惩罚参数,在接下来的迭代求解过程中以非下降阶(non-descending order)的形式变化;

等式(5)可以被下面两个迭代的式子所解决:变量分割技术,

$x_{k+1}=\left. arg\text{ }min \right|_{x}|| y-H x||^{2}+\mu||x-z_k||^{2}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }(6a)$

$z_{k+1}=\left. arg\text{ } min \right|_{z}\frac{\mu}{2} ||z-x_{k+1}||+\lambda\Phi(z)\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }(6b)$

可以看到保真项与正则化项被分开到两个子问题中

等式(6a)保真项在二次正则化最小二乘问题,有很多针对不同的退化矩阵快速解法,最简单的解法

$x_{k+1}=(H^{T}H+\mu I)^{-1}(H^{T}y+\mu z_{k}) \text{ }\text{ }\text{ }\text{ }\text{ }\text{ }(7)$

正则化项涉及在6(a)中,可以重写为(8)

$z_{k+1}=\left. arg\text{ } min \right|_{z} \frac{1}{2(\sqrt{\lambda / \mu})^2} ||x_{k+1}-z||^2+\Phi(z)\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }(8)$

通过贝叶斯概率公式,等式(8)可以看做是对应于一个去噪任务噪声水平为$\sqrt{\lambda / \mu}$,所以可以通过去噪器实现求出$z_{k+1}$.

以噪声水平$\sqrt{\lambda / \mu}$高斯去噪器的去噪图像$x_{k+1}$.去噪器可以作为(2)的模块,为了强调这个,重写(8)

$z_{k+1}=Denoiser(x_{k+1},\sqrt{\lambda / \mu})\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }(9)$

值得注意的是图像先验$\Phi$可以间接被去噪先验替代,这种解法有一些优点:

-- 他允许使用各种灰度和彩色降噪器去解决各种inverse 问题;

-- 求解Eqn2时,显式图像先验$\Phi(\cdot)$是未知的;

-- 利用多个互补(complementary)的去噪器,利用不同的图像先验,可以共同解决一个特定的问题;

论文解读《Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernel》的更多相关文章

  1. 《Population Based Training of Neural Networks》论文解读

      很早之前看到这篇文章的时候,觉得这篇文章的思想很朴素,没有让人眼前一亮的东西就没有太在意.之后读到很多Multi-Agent或者并行训练的文章,都会提到这个算法,比如第一视角多人游戏(Quake ...

  2. ImageNet Classification with Deep Convolutional Neural Networks 论文解读

    这个论文应该算是把深度学习应用到图片识别(ILSVRC,ImageNet large-scale Visual Recognition Challenge)上的具有重大意义的一篇文章.因为在之前,人们 ...

  3. 《Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks》论文笔记

    论文题目<Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Ne ...

  4. Quantization aware training 量化背后的技术——Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference

    1,概述 模型量化属于模型压缩的范畴,模型压缩的目的旨在降低模型的内存大小,加速模型的推断速度(除了压缩之外,一些模型推断框架也可以通过内存,io,计算等优化来加速推断). 常见的模型压缩算法有:量化 ...

  5. Training Deep Neural Networks

    http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html  //转载于 Training Deep Neural ...

  6. Training (deep) Neural Networks Part: 1

    Training (deep) Neural Networks Part: 1 Nowadays training deep learning models have become extremely ...

  7. [CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...

  8. Training spiking neural networks for reinforcement learning

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 原文链接:https://arxiv.org/pdf/2005.05941.pdf Contents: Abstract Introduc ...

  9. CVPR 2018paper: DeepDefense: Training Deep Neural Networks with Improved Robustness第一讲

    前言:好久不见了,最近一直瞎忙活,博客好久都没有更新了,表示道歉.希望大家在新的一年中工作顺利,学业进步,共勉! 今天我们介绍深度神经网络的缺点:无论模型有多深,无论是卷积还是RNN,都有的问题:以图 ...

  10. 论文翻译:BinaryConnect: Training Deep Neural Networks with binary weights during propagations

    目录 摘要 1.引言 2.BinaryConnect 2.1 +1 or -1 2.2确定性与随机性二值化 2.3 Propagations vs updates 2.4 Clipping 2.5 A ...

随机推荐

  1. Spring学习(七)bean装配详解之 【通过注解装配 Bean】【自动装配的歧义解决】

    自动装配 1.歧义性 我们知道用@Autowired可以对bean进行注入(按照type注入),但如果有两个相同类型的bean在IOC容器中注册了,要怎么去区分对哪一个Bean进行注入呢? 如下情况, ...

  2. 刷题[安恒DASCTF2020四月春季赛]Ez unserialize

    解题思路 打开直接源码,没别的,审就完事了 代码审计 <?php show_source("index.php"); function write($data) { retu ...

  3. jdk在linux下安装、配置环境变量

    1.jdk下载: 下载地址:https://www.oracle.com/java/technologies/javase-downloads.html 2. 3. 4.解压jdk到/usr/loca ...

  4. .NETCore在析构函数(Finalize)在Linux下引起程序异常退出现象

    目       录 1.      现象概述... 1 2.      操作数据库的代码... 2 3.      引起的异常... 2 4.      异常信息分析... 3 5.      分析结 ...

  5. SCI-HUB打不开了?附SCIHUB最新下载方式

    写在前面: 今天给大家推荐一个文献下载工具包:飞鸟科研助手 www.flybird.cc输入flybird.cc同样可以访问,存书签不失联!强调下:flybird.cc 读研之前,在一家NGS生殖应用 ...

  6. C 类型限定符

    C 类型限定符 1. Introduction C 语言中的大部分类型都可以用称为限定符(qualifier)的关键字 const. volatile. restrict. _Atomic 加以限定. ...

  7. springboot集成swagger文档

    //此处省略springboot创建过程 1.引入swagger相关依赖(2个依赖必须版本相同) <dependency> <groupId>io.springfox</ ...

  8. 【小白学PyTorch】17 TFrec文件的创建与读取

    [新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx64501661 ...

  9. 一文搞懂AQS及其组件的核心原理

    @ 目录 前言 AbstractQueuedSynchronizer Lock ReentrantLock 加锁 非公平锁/公平锁 lock tryAcquire addWaiter acquireQ ...

  10. 如何使用MATLAB对图片的RGB三种颜色进行提取

    参考: https://jingyan.baidu.com/article/456c463b41de5f0a5831448e.html matlab在图像处理方面,具有很强大的应用.下面将分享如何使用 ...