题目描述

给定长为 n 的数列 a, 要求划分成 m 段,使得方差最小, 输出方差\(*m^2\)

题解

斜率优化好题

准备部分

设第 i 段长为 \(len_i\)

先考虑方差(\(S^2\))的式子:

\[S^2 = \frac{1}{m}*\sum_{i=1}^m(len_i - (\frac{1}{m}*\sum_{j=1}^{m}len_j) )^2
\]

拆项得 -->

\[S^2 = \frac{1}{m}\sum_{i=1}^{m}len_i^2+\frac{1}{m}\sum_{i=1}^{m}\frac{1}{m^2}\sum_{j=1}^{m}len_j-2*\frac{1}{m}*\sum_{i=1}^{m}(len[i]*\frac{1}{m}\sum_{j=1}^{m}len_j)
\]

-->

\[S^2 = \frac{1}{m}\sum_{i=1}^{m}len_i^2+\frac{1}{m^2}\sum_{i=1}^{m}len_i^2-2*\frac{1}{m^2}*(\sum_{i=1}^{m}len_i)*(\sum_{j=1}^{m}len_j)
\]

-->

\[S^2 = \frac{1}{m}\sum_{i=1}^{m}len_i^2-\frac{1}{m^2}\sum_{i=1}^{m}len_i^2
\]

再把\(m^2\)乘进去

\[m*\sum_{i=1}^{m}len_i^2-\sum_{i=1}^{m}len_i^2
\]

可发现$$-\sum_{i=1}^{m}len_i^2$$ 这一坨是常数,也就是原序列和的平方

然后开始DP

设 f[i][k] 表示当前在第 i 个数,划分成 k 段

转移时枚举第 k 段的起点 j+1 (终点是 i ,注意这里枚举的是j+1):

\[f[i][k] =f[j][k-1]+(\sum_{l=j+1}^{i}a[l])^2
\]

再用滚动数组g(也可不用)与前缀和sum记录一下 a[l] 优化就好

也就是

\[f[i]=g[j]+(sum[i]-sum[j])^2
\]

斜率优化

把上面的DP转移方程拆开即得:

\[g[j]+sum[j]^2=-2*sum[i]*sum[j]+(sum[i]^2-f[i])
\]

把\(g[j]+sum[j]^2\) 看做 Y;

把\(sum[j]^2\) 看做 X;

把\(-2*sum[i]\) 看做 K;

把\((sum[i]^2-f[i])\) 看做 B;

然后用单调队列维护一下斜率递增的决策点就好

代码

#include<bits/stdc++.h>
using namespace std;
#define re register
#define in inline
#define get getchar()
#define ll long long
in int read()
{
int t=0; char ch=get;
while(ch<'0' || ch>'9') ch=get;
while(ch<='9' && ch>='0') t=t*10+ch-'0', ch=get;
return t;
}
const int _=5001;
int n,m;
ll sum[_],f[_],g[_],q[_];
#define db double
in db calc(int a,int b)
{
ll Y1=g[a]+sum[a]*sum[a],Y2=g[b]+sum[b]*sum[b];
return 1.0*(Y1-Y2)/(sum[a]-sum[b]);
}
int main()
{
n=read(),m=read();
for(re int i=1;i<=n;i++){
sum[i]=sum[i-1]+read();
g[i]=sum[i]*sum[i];
}
for(re int k=2;k<=m;k++)
{
int l=1,r=0;
q[l]=0;q[0]=0;
for(re int i=1;i<=n;i++)
{
while(l<r && calc(q[l],q[l+1]) < 2*sum[i]) l++;
int j=q[l];
f[i]=g[j]+(sum[i]-sum[j])*(sum[i]-sum[j]);
while(l<r && calc(q[r],i) < calc(q[r-1],i)) r--;
q[++r]=i;
}
memcpy(g,f,sizeof(g));
}
cout<<m*f[n]-sum[n]*sum[n]<<endl;
}

SDOI征途--斜率优化的更多相关文章

  1. 洛谷 P4072 [SDOI2016]征途 斜率优化DP

    洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...

  2. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

  3. BZOJ 4518: [Sdoi2016]征途 [斜率优化DP]

    4518: [Sdoi2016]征途 题意:\(n\le 3000\)个数分成m组,一组的和为一个数,求最小方差\(*m^2\) DP方程随便写\(f[i][j]=min\{f[k][j-1]+(s[ ...

  4. bzoj4518[Sdoi2016]征途 斜率优化dp

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1657  Solved: 915[Submit][Status] ...

  5. [SDOI2016 Round1] 征途[斜率优化]

    2225. [SDOI2016 Round1] 征途 ★★★☆   输入文件:menci_journey.in   输出文件:menci_journey.out   简单对比时间限制:1 s   内存 ...

  6. 【BZOJ4518】[Sdoi2016]征途 斜率优化

    [BZOJ4518][Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除 ...

  7. 【bzoj4518】[Sdoi2016]征途 斜率优化dp

    原文地址:http://www.cnblogs.com/GXZlegend/p/6812435.html 题目描述 Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界 ...

  8. [bzoj4518][Sdoi2016]征途-斜率优化

    Brief Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须 ...

  9. bzoj4518征途 斜率优化

    征途这是一道十分经典的斜率优化 我们可以从题目中的方差来想,也就很容易的到这个式子 \[ans=m^2*\frac{\sum_{i=1}^{m}{(x_i-{\overline{x}})^2}}{m} ...

随机推荐

  1. Ubuntu16.04 Nvidia显卡驱动简明安装指南

    简单得整理了一下Ubuntu16.04 Nvidia显卡驱动的安装步骤: 查看当前系统显卡参数: sudo lspci | grep -i nvidia 删除之前的驱动: sudo apt-get - ...

  2. 性能测试Jmeter安装

    一. Jmeter下载地址: http://jmeter.apache.org/download_jmeter.cgi   二. JDK下载地址: https://www.oracle.com/tec ...

  3. Java集合-07Map接口及其抽象类

    简介 前面把List基本记录完了,对于集合List,Map,Set,因为Set基于Map,故先记录Map. 这一篇主要记录Map接口及其抽象类(java version:1.8) 整体架构 参考上图, ...

  4. 记一次数据库主从导致严重的bug解决过程

    1.事情起始: 我们每个月要给商家进行出账,所以有定时任务去跑商家的订单和售后进行出账,这个功能已经上线很久了,代码执行多次都没问题,突然有一天,产品找我说出现bug了: 这时,去生产库查询重复的订单 ...

  5. [Angular JS教程] HeroService: getHeroes failed: undefined 问题解决方法

    最近在学习入门Angular JS,学习资源是https://angular.cn/tutorial, 在学习到 "https://angular.cn/tutorial/toh-pt6模拟 ...

  6. 晶振(crystal)与谐振荡器(oscillator)

    参考: 1. https://wenku.baidu.com/view/e609af62f5335a8102d2202f.html 2. 晶体振荡器也分为无源晶振和有源晶振两种类型.无源晶振与有源晶振 ...

  7. 【题解】一本通例题 S-Nim

    \(\color{purple}{Link}\) \(\text{Solution:}\) 这个题就是给\(Nim\)游戏做了一个限制. 考虑一下\(\text{SG}\)函数:给定的局面下对应的\( ...

  8. springcloud学习入门

    Springcloud入门学习笔记 1. 项目初始化配置 1. 1. 新建maven工程 使用idea创建maven项目 1. 2. 在parent项目pom中导入以下依赖 <parent> ...

  9. Python装饰器实现带参数和不带参数

    1 def log(text=None): 2 3 if isinstance(text, str): 4 def decorator(func): 5 @functools.wraps(func) ...

  10. auto_send_tablespace.sh

    简述:周期定时发送表空间到指定邮箱内 1.修改邮箱配置 /etc/mail.rc,具体细节见网上教程 $ vi /etc/mail.rc set from=123456@qq.comset smtp= ...