XXX has an array of length n. XXX wants to know that, for a given w, what is the sum of the distinct elements’ number in all substrings of length w. For example, the array is { 1 1 2 3 4 4 5 } When w = 3, there are five substrings of length 3. They are (1,1,2),(1,2,3),(2,3,4),(3,4,4),(4,4,5) 
The distinct elements’ number of those five substrings are 2,3,3,2,2. 
So the sum of the distinct elements’ number should be 2+3+3+2+2 = 12

InputThere are several test cases. 
Each test case starts with a positive integer n, the array length. The next line consists of n integers a 1,a2…a n, representing the elements of the array. 
Then there is a line with an integer Q, the number of queries. At last Q lines follow, each contains one integer w, the substring length of query. The input data ends with n = 0 For all cases, 0<w<=n<=10 6, 0<=Q<=10 4, 0<= a 1,a 2…a n <=10 6OutputFor each test case, your program should output exactly Q lines, the sum of the distinct number in all substrings of length w for each query.Sample Input

7
1 1 2 3 4 4 5
3
1
2
3
0

Sample Output

7
10
12

这真是道好题啊,dp的题 看题解理解起来真费劲。
题意:给一个序列,将其分为长度为m的集合,求每个集合的 不同元素的个数 之和。

解题思路:一开始我是想到线段树和树状数组,但是因为对这些掌握的不太熟,只会加减乘gcd,而且找不到子集和母集合直接关系,感觉是dp,但是无从下手。后来看了好久的题解,最后才明白。

题解地址:http://blog.csdn.net/a601025382s/article/details/12283581

题解内容:

题意:

给定一个序列ai,个数为n。再给出一系列w;对于每个w,求序列中,所有长度为w的连续子串中的权值和,子串权值为子串中不同数的个数

题解:

一道动态规划体。。一开始i想成了树状数组。dp[i表示w=i时所求的答案。dp[1]=n,这个很容易知道,dp[2]中的子串就是删去dp[1]中最后一个子串,再每个子串加上其之后的那个数,以此类推。。

要删去的最后一个子串的权值很好求,for以遍就能预处理,num[i]表示w=i的最后一个子串权值。难的就是求加上一个数后所加的权值:另c[i]表示一个数与它前面值相同的最近距离,这也能for一遍预处理。之后求出sum[i],表示两同值数最短距离大于等于i的值。对于dp[i-1]推dp[i],加上一个数,只有当这个数与它前面同值数最短距离大于等于i时才会加权值,否则会重复而不加。所以可以推出递推式:dp[i]=dp[i-1]-num[i-1]+sum[i],dp[1]=n;

注意:

1.处理c[i]的时候,如果一个数ai前面没有相同的数,则距离计算为到0的距离i,why?因为加上这类数也是成立。

2.答案dp[i]会超int,我就wa了好几次。。


这题的思路就是,比如集合长度len为1的时候,每个集合不同元素的个数c肯定是1,而len加1时,因为总共就n个数,集合的总数量肯定会减1,也就是最后一个集合会消失。而c是否会加,取决于新加的这个元素在集合中有没有相同的数。所以我们要预处理每个数与其前面最近的相同的数的距离,如果与最近的相同数的距离大于集合的长度,也就是说在集合外,那么把这个数加入集合c就会加1。我们把距离为i的相同数的个数存在cnt[i]数组里面。这样我们求长度为2的时候,只需要先把除了长度小于2的cnt全加上,再减去长度为1时最后一个集合的值就是答案。
所以最后的公式就是dp[i]=dp[i-1]-last[i-1]+sum[i];//sum[i]为cnt从i到n的和。
注意,这里计算记录cnt数组的时候,不需要记录距离为i的两个相同数的位置,因为这些子集把n个数完全覆盖,所以无论这两个数在哪,都会被考虑在子集中,不明白的话可以自己用一个例子模拟一下,会发现只需要记距离为i的个数有多少就行了。

 1 #include <stdio.h>
2 #include <cstring>
3 #include <iostream>
4 #include <algorithm>
5 #include <cmath>
6 #include <stack>
7 #include <queue>
8 typedef long long ll;
9 const int maxn = 1e6+5;
10 int nu[maxn],pre[maxn],cnt[maxn],sum[maxn],lt[maxn];
11 ll dp[maxn]; //dp会爆int
12 using namespace std;
13
14 int main(){
15 ios::sync_with_stdio(false);
16 int n,m,t;
17 while(cin>>n,n)
18 {
19 memset(dp,0,sizeof(dp));
20 memset(pre,0,sizeof(pre));
21 memset(cnt,0,sizeof(cnt));
22 memset(sum,0,sizeof(sum));
23 memset(lt,0,sizeof(lt));
24
25 for(int i=1;i<=n;++i) cin>>nu[i];
26
27 for(int i=1;i<=n;++i) //求出相同的值距离为i的数有多少对
28 {
29 cnt[i-pre[nu[i]]]++;
30 pre[nu[i]]=i;
31 }
32 sum[n]=cnt[n];
33 for(int i=n-1;i>=1;i--) //把cnt的和按len=n到1的顺序存在sum数组里面。便于最后操作
34 {
35 sum[i]=sum[i+1]+cnt[i];
36 }
37 memset(pre,0,sizeof(pre));
38 lt[1]=1;
39 pre[nu[n]]++;
40 for(int i=2;i<=n;++i) //记录最后一个集合的不同元素个数
41 {
42 if(pre[nu[n-i+1]])
43 lt[i]=lt[i-1];
44 else
45 {
46 lt[i]=lt[i-1]+1;
47 pre[nu[n-i+1]]=1;
48 }
49 }
50 dp[1]=n;
51 for(int i=2;i<=n;++i)
52 {
53 dp[i]=dp[i-1]+sum[i]-lt[i-1];//重点
54 }
55 cin>>m;
56 for(int i=0;i<m;++i)
57 {
58 cin>>t;
59 cout<<dp[t]<<endl;
60 }
61 }
62 return 0;
63 }

HDU - 4455 Substrings(非原创)的更多相关文章

  1. hdu 4455 Substrings(计数)

    题目链接:hdu 4455 Substrings 题目大意:给出n,然后是n个数a[1] ~ a[n], 然后是q次询问,每次询问给出w, 将数列a[i]分成若干个连续且元素数量为w的集合,计算每个集 ...

  2. HDU 4455.Substrings

    Substrings Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  3. hdu 4455 Substrings(找规律&DP)

    Substrings Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  4. hdu 4455 Substrings (DP 预处理思路)

    Substrings Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  5. HDU 4455 Substrings[多重dp]

    Substrings Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  6. HDU 4455 Substrings --递推+树状数组优化

    题意: 给一串数字,给q个查询,每次查询长度为w的所有子串中不同的数字个数之和为多少. 解法:先预处理出D[i]为: 每个值的左边和它相等的值的位置和它的位置的距离,如果左边没有与他相同的,设为n+8 ...

  7. HDU 4455 Substrings ( DP好题 )

    这个……真心看不出来是个DP,我在树状数组的康庄大道上欢快的奔跑了一下午……看了题解才发现错的有多离谱. 参考:http://www.cnblogs.com/kuangbin/archive/2012 ...

  8. Linux下high CPU分析心得【非原创】

    非原创,搬运至此以作笔记, 原地址:http://www.cnitblog.com/houcy/archive/2012/11/28/86801.html 1.用top命令查看哪个进程占用CPU高ga ...

  9. CSS样式命名整理(非原创)

    非原创,具体出自哪里忘了,如果侵害您的利益,请联系我. CSS样式命名整理 页面结构 容器: container/wrap 整体宽度:wrapper 页头:header 内容:content 页面主体 ...

随机推荐

  1. USB限流芯片,4.8A最大,过压关闭6V

    PW1503,PW1502是超低RDS(ON)开关,具有可编程的电流限制,以保护电源源于过电流和短路保护.它具有超温保护以及反向闭锁功能. PW1503,PW1502采用薄型(1毫米)5针薄型SOT2 ...

  2. Java 给Word不同页面设置不同背景

    Word文档中,可直接通过[设计]-[页面颜色]页面颜色,通过Java代码可参考如下设置方法: 1. 设置单一颜色背景 doc.getBackground().setType(BackgroundTy ...

  3. 一篇文章带你初步了解—CSS特指度

    CSS特指度 说明 这篇博客在在两台电脑上分别完成的,故而有些截图是Firefox,有些是Chrome,有些改动了浏览器的用户样式表,有些没改,但不会影响阅读,特此说明,勿怪. CSS选择器 单个CS ...

  4. 13 | 实战:单机如何实现管理百万主机的心跳服务? https://time.geekbang.org/column/article/240656

    13 | 实战:单机如何实现管理百万主机的心跳服务? https://time.geekbang.org/column/article/240656

  5. 数据水印 watermark

    外发数据创建水印 产品通过对外发数据进行添加数据标记.自动生成水印.数据源追溯等功能,避免了内部人员外发数据泄露无法对事件追溯,提高了数据传递的安全性和可追溯能力. 数据水印系统_数据安全管理工具_[ ...

  6. linux文件、目录管理

    系统目录结构 ls(list)ls / 根下面的目录每个用户都有一个家目录创建一个普通用户: useradd xfxing可查看该用户:ls /home/xfxing/ (useradd user1 ...

  7. vue-router实现路由懒加载( 动态加载路由 )

    三种方式第一种:vue异步组件技术 ==== 异步加载,vue-router配置路由 , 使用vue的异步组件技术 , 可以实现按需加载 .但是,这种情况下一个组件生成一个js文件.第二种:路由懒加载 ...

  8. 数位DP笔记

    数位DP 1.定义: 数位dp是一种计数用的dp,一般就是要统计一个区间[L,R]内满足一些条件数的个数.所谓数位dp,字面意思就是在数位上进行dp: 数位的含义:一个数有个位.十位.百位.千位... ...

  9. bzoj 2038(莫队算法)

    2038: [2009国家集训队]小Z的袜子(hose) 时间限制: 20 Sec  内存限制: 259 MB 题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来 ...

  10. vue项目中基于D3.js实现桑基图功能

    前端实现数据可视化的方案有很多种,以前都是使用百度的echarts,使用起来很方便,直接按照特定的数据格式输入,就能实现相应的效果,虽然使用方便,但是缺点就是无法自定义一些事件操作,可自由发挥的功能很 ...