华山论剑(没有上司的舞会)

题目描述

一日,小策如往常一般打开了自己的传奇,刚上线不久,就收到了帮主的私信。原来帮派里要召开一次武功比拼,让他来邀请各帮派人员,因为有些侠客还是萌新,所以需要小策挨个选取战力高的侠客。

本帮派——华山,实行了师徒制,每位侠客都有自己的师傅,师傅也有自己的师傅,一直到本帮派帮主。

每位侠客都有自己的战力,因为本次比拼会在全区直播,大家肯定愿意看更加激烈的战斗,所以肯定是战力越高越好。

但是还有一个要求,当邀请了一位侠客的师傅的时候,便不能再邀请那位侠客了。

请你帮助小策来计算,邀请哪些侠客可以使武会的战力总和最大,求最大的战力总和。

注:并不是师傅的战力一定比徒弟高,也有“青出于蓝而胜于蓝”的情况,但是师徒关系是不变的。

为了便于计算,我们将每位侠客表上编号 \((1...n)\) 。

输入格式

第 \(1\) 行是一个整数 \(n\) ,表示有 \(n\) 个侠客;\((1\leq n\leq 6000)\)

第 \(2\) 行到第 \((n+1)\) 行,每行一个整数,第 \((i+1)\) 行的整数表示第 \(i\) 号侠客的战力值 \(r (-128\leq r\leq 127)\) (这里你们可能会疑惑了,但是玩游戏怎么不会有个坑逼呢,拉低全员战力)

第 \((n+2)\) 行到第 \((2n+1)\) 行,每行输入一堆整数 \(x\),\(y\),表示 \(y\) 是 \(x\) 的师傅

最后一行输入 \(0,0\)

输出格式

输出一行一个整数代表最大的战力总和

样例

样例输入

3
52
42
36
1 3
3 2
0 0

样例输出

94

基本思路

根据题目判断,由于有徒弟师傅这种关系,可以讲整个帮派看成一整颗树,帮主便是树根,每位侠客的战力值便是每个树节点的权值,现在就可以判断整个题就是对树形 \(dp\) 的考察。

但是与常规树形 \(dp\) 不同的是,这个题有个限制条件,便是:父节点被选中时,他的子节点便不能被选中了。

如果说仅仅定义一个一维的 \(dp[i]\) ,无法进行限制条件的判断。

所以,需要定义一个二维的 \(dp[i][j]\) ,表示的是以 \(i\) 为根节点的子树,\(i\) 去不去时的最大战力值,\(j\) 表示 \(i\) 去不去的状态,\(j=1\) 便是 \(i\) 去,\(j=0\) 便是 \(i\) 不去。

那么状态转移方程便可以得出:

师傅来,徒弟不能来。师傅不来,徒弟就能来。所以,决策便是师傅到底来不来,即对 \(dp[i][j]\) 中的 \(j\) 讨论取 \(1\) 还是取 \(0\) 了。

for(int i=head[now];i;i=e[i].next){
dp[now][flag]+=dfs(e[i].to,!flag);
}

剩下的就注意有负的战力值,初始化的时候就需要注意一下。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn=10000+50;
struct Edge{
int next;
int to;
}e[maxn];
int dp[maxn][2];
int a[maxn];
int in[maxn];
int head[maxn];
int cnt=0;
int n,x,y,root;
void insert(int u,int v){
e[++cnt].next=head[u];
head[u]=cnt;
e[cnt].to=v;
in[v]++;
}
int dfs(int now,bool flag){
if(!head[now]){
if(flag){
return a[now];
}else{
return 0;
}
}
for(int i=head[now];i;i=e[i].next){
dp[now][flag]+=dfs(e[i].to,!flag);
}
return dp[now][flag];
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
}
for(int i=1;i<=n;i++){
dp[i][1]=max(a[i],0);
}
for(int i=1;i<n;i++){
scanf("%d%d",&x,&y);
insert(y,x);
}
scanf("%d%d",&x,&y);
for(int i=1;i<=n;i++){
if(!in[i]){
root=i;
break;
}
}
dfs(root,0);
dfs(root,1);
cout<<max(dp[root][0],dp[root][1])<<endl;
return 0;
}

华山论剑(没有上司的舞会)——树形dp的更多相关文章

  1. [luogu]P1352 没有上司的舞会[树形DP]

    本Lowbee第一次写树形DP啊,弱...一个变量写错半天没看出来...... 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点 ...

  2. 『没有上司的舞会 树形DP』

    树形DP入门 有些时候,我们需要在树形结构上进行动态规划来求解最优解. 例如,给定一颗\(N\)个节点的树(通常是无根树,即有\(N-1\)条无向边),我们可以选择任意节点作为根节点从而定义出每一颗子 ...

  3. 洛谷P1352 没有上司的舞会——树形DP

    第一次自己写树形DP的题,发个博客纪念`- 题目来源:P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结 ...

  4. CodeVS1380 没有上司的舞会 [树形DP]

    题目传送门 没有上司的舞会 题目描述 Description Ural大学有N个职员,编号为1~N.他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.每个职员有一个 ...

  5. 没有上司的舞会 树形dp

    题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...

  6. P1352 没有上司的舞会——树形DP入门

    P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员 ...

  7. P1352 没有上司的舞会[树形dp]

    题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...

  8. P1352 没有上司的舞会&&树形DP入门

    https://www.luogu.com.cn/problem/P1352 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的 ...

  9. 洛谷 P1352 没有上司的舞会 树形DP板子

    luogu传送门 题目描述: 某大学有n个职员,编号为1~n. 他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司. 现在有个周年庆宴会,宴会每邀请来一个职员都会 ...

  10. 【codevs1380】没有上司的舞会 树形dp

    题目描述 Ural大学有N个职员,编号为1~N.他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.每个职员有一个快乐指数.现在有个周年庆宴会,要求与会职员的快乐指数 ...

随机推荐

  1. Python之Flask框架二

    今天接着上一篇继续写一篇关于flask的随笔. 本文大纲: 1.获取请求参数 2.一个函数处理多个请求方式 3.重定向 4.错误响应 5.全局错误处理 6.返回json格式数据 7.自定义返回内容状态 ...

  2. 【JAVA习题三十】求0—7所能组成的奇数个数

    package erase; public class 求0到7所能组成的奇数个数 { public static void main(String[] args) { /* * 求0—7所能组成的奇 ...

  3. 线性表 & 散列表

    线性表: 数据排成一条线一样的机构,每个线性表上的数据最多只有前后两个方向, 包括 数组,链表,队列,栈. 非线性表 : 数据之间并不是简单的前后关系,有二叉树.图等. 散列表(基于 数组支持按照下标 ...

  4. js中有遍历作用相关的方法详解总结

    题外话 os:个人笔记: 大概接触过map, foreach, for, filter, findIn, includes等等 字符串检索 .indexOf() 返回某个指定字符串值在字符串中首次出现 ...

  5. 痞子衡嵌入式:链接函数到8字节对齐地址或可进一步提升i.MXRT内核执行性能

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是i.MXRT上进一步提升代码执行性能的经验. 今天跟大家聊的这个话题还是跟痞子衡最近这段时间参与的一个基于i.MXRT1170的大项目有 ...

  6. Apollo移植

    Apollo移植 环境 平台 ubuntu16.04 Apollo_kernel 1.0 安装步骤步骤 步骤一:安装ubuntu(官方建议使用Ubuntu 14.04.3) 步骤一和步骤二参考文档路径 ...

  7. SpringBoot与(Security)安全

    1.简介 应用程序的两个主要区域 认证(Authentication): 是建立一个它声明的主体的过程(一个"主体" 一般是指用户,设备或一些可以在你的应用程序中执行动作的其他系统 ...

  8. Fibonacci(模板)【矩阵快速幂】

    Fibonacci 题目链接(点击) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20989   Accepted: 14 ...

  9. Mybaties概述

  10. Windows服务监控工具Perfmon

    原文:https://www.jianshu.com/p/f82c2b726ecf 一.Perfmon简介.性能监控指标.性能对象指标 Perfmon:提供了图表化的系统性能实时监视器.性能日志和警报 ...