Manacher(马拉车)算法详解
给定一个字符串,求出其最长回文子串
eg: abcba
第一步: 在字符串首尾,及各字符间各插入一个字符(前提这个字符未出现在串里)。
如 原来ma /* a b a b c */
更改ma /* $ # a # b # a # b # c # */
第二步:设置两个变量,mx 和 id 。mx 代表以 id 为中心的最长回文的右边界,也就是mx = id + mp[id];
id是已知的最长的回文串的中心,我们可以发现i关于id对称是j。由于i从2开始枚举过来,早就经过了j的位置,所以j位置的最长回文串已经确定如图所示
**如果回文串的子串也是回文串,那么这个子串关于主串中心对称而得的子串也是一个回文串
如果i点跑到mx(id点回文串所确定的范围边界)外面去了,那么j点无论如何缩减范围都不可能是id回文串的子串,就不满足上面加粗的结论了。就一定只能从1开始慢慢试探。这就是当i>mx的时候,mp[i] = 1的原因了
根据回文的性质,p[i] 的值基于以下三种情况得出:
(1)j 的回文串有一部分在 id 的之外,如下图:
上图中,黑线为 id 的回文,i 与 j 关于 id 对称,红线为 j 的回文。那么根据代码此时mp[i] = mx - i,即紫线。那么p[i]还可以更大么?答案是不可能!见下图:
假设右侧新增的紫色部分是p[i]可以增加的部分,那么根据回文的性质,a 等于 d ,也就是说 id 的回文不仅仅是黑线,而是黑线 + 两条紫线,矛盾,所以假设不成立,故mp[i] = mx - i,不可以再增加一分。
(2)j 回文串全部在 id 的内部,如下图:
根据代码,此时mp[i] =mp[j],那么p[i]还可以更大么?答案亦是不可能!见下图:
假设右侧新增的红色部分是p[i]可以增加的部分,那么根据回文的性质,a 等于 b ,也就是说 j 的回文应该再加上 a 和 b ,矛盾,所以假设不成立,故p[i] = p[j],也不可以再增加一分。
(3)j 回文串左端正好与 id 的回文串左端重合,见下图:
根据代码,此时p[i] = p[j]或p[i] = mx - i,并且p[i]还可以继续增加,所以需要
while (ma[i - mp[i]] == ma[i + mp[i]]) mp[i]++;
第三步:更新id,mx;
若新计算的回文串右端点位置大于mx,要更新id和mx的值即:mx<mp[i]+i;更新id,mx;
第四步:遍历所有的mp[],算出最长回文子串.
性质:最长回文长度=mp[i]-1; mp[i]个'#',mp[i]-1个字符,原长2*mp[i]-1;
Manacher(马拉车)算法详解的更多相关文章
- 算法进阶面试题01——KMP算法详解、输出含两次原子串的最短串、判断T1是否包含T2子树、Manacher算法详解、使字符串成为最短回文串
1.KMP算法详解与应用 子序列:可以连续可以不连续. 子数组/串:要连续 暴力方法:逐个位置比对. KMP:让前面的,指导后面. 概念建设: d的最长前缀与最长后缀的匹配长度为3.(前缀不能到最后一 ...
- Manacher(马拉车)算法(jekyll迁移)
layout: post title: Manacher(马拉车)算法 date: 2019-09-07 author: xiepl1997 cover: 'assets/img/manacher.p ...
- BM算法 Boyer-Moore高质量实现代码详解与算法详解
Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...
- kmp算法详解
转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- [转] KMP算法详解
转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的K ...
- 【转】AC算法详解
原文转自:http://blog.csdn.net/joylnwang/article/details/6793192 AC算法是Alfred V.Aho(<编译原理>(龙书)的作者),和 ...
- KMP算法详解(转自中学生OI写的。。ORZ!)
KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句 ...
- EM算法详解
EM算法详解 1 极大似然估计 假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么? 图1 学生成 ...
随机推荐
- 切换用户后whoami打印用户的问题
问题: 为何第二个whoami打印的还是root? root@localhost /]# [root@localhost /]# [root@localhost /]# more test.sh #! ...
- IDEA一步步创建Maven管理的Spring入门程序
目前,做Java开发的很多人都在使用IDEA了,而有些人也选择用Eclipse,我这里介绍一下IDEA一步步创建Maven项目的步骤,并创建一个Spring的入门程序(Java项目,非Web项目),讲 ...
- 怎么判断是旧版本的ext3还是新版本?
怎么判断是旧版本的ext3还是新版本的? ---高性能419
- 【Linux】Linux系统dev/目录下的tty
终端是一种字符型设备,它有多种类型,通常使用tty来简称各种类型的终端设备.tty是Teletype的缩写.Teletype是最早出现的一种终端设备,很象电传打字机(或者说就是),是由Teletyp ...
- oracle查看用户的系统权限,角色以及数据库对象权限
select * from dba_sys_privs where GRANTEE='monkey'; select * from dba_role_privs where GRANTEE='monk ...
- docker mysql 设置忽略大小写
使用docker 安装mysql时 Linux下是默认不忽略大小写,导致操作数据库的时候会报如下错误 为了解决上面的问题,我们在创建MySQL容器的时候就需要初始化配置 lower_case_ta ...
- scrapy的大文件下载(基于一种形式的管道类实现)
scrapy的大文件下载(基于一种形式的管道类实现) 爬虫类中将解析到的图片地址存储到item,将item提交给指定的管道 在管道文件中导包:from scrapy.pipelines.images ...
- uni-app开发经验分享六:页面跳转及提示框
在我们开发的uni-app的过程中,页面跳转及提示框往往是我们做数据交互及结果反馈所要使用的功能,这里分享下我收集的一些方法及看法. 一:页面跳转 事件跳转 :指通过tap等事件来实现页面的跳转,跳转 ...
- 面试必问:如何实现Redis分布式锁
摘要:今天我们来聊聊分布式锁这块知识,具体的来看看Redis分布式锁的实现原理. 一.写在前面 现在面试,一般都会聊聊分布式系统这块的东西.通常面试官都会从服务框架(Spring Cloud.Dubb ...
- 一文说通Dotnet的委托
简单的概念,也需要经常看看. 一.前言 先简单说说Delegate的由来.最早在C/C++中,有一个概念叫函数指针.其实就是一个内存指针,指向一个函数.调用函数时,只要调用函数指针就可以了,至于函 ...