【NOIP2016】天天爱跑步 题解(LCA+桶+树上差分)
题目大意:给定一颗含有$n$个结点的树,每个结点有一个权值$w$。给定$m$条路径,如果一个点与路径的起点的距离恰好为$w$,那么$ans[i]++$。求所有结点的ans。
题目分析
暴力的做法当然是枚举条路径,然后玄学$dfs$,复杂度应该是$O(nm)$的。再根据约束条件可以拿到65pts。
正解
对于一条路径$(u,v)$,我们可以将其分成两段:$(u,lca(u,v))$和$(lca(u,v),v)$。
我们先来分析上行路段。上行路段的要求有3个:
1.$u$在以$i$为根的子树里面。
2.$lca(u,v)$在以$i$为根的子树外面。
3.$dep[u]=dep[i]+w[i]$
同理对于下行路段也有3个条件:
1.$v$在以$i$为根的子树里面。
2.$lca(u,v)$在以i为根的子树外面。
3.$dis[s,t]-dep[t]=w[i]-dep[i]$
这样我们可以枚举每个结点,即dfs整棵树,复杂度$O(n)$。
对于这道题,我们还需要用桶来统计贡献。具体操作方法:
b1:上行阶段的贡献值。
b2:下行阶段的贡献值。
void dfs2(int x)
{
int t1=b1[w[x]+dep[x]], t2=b2[w[x]-dep[x]+maxn];//递归前的ans[x]
for(int i=head[x]; i; i=edge[i].next)
{
int y=edge[i].to;
if(y==fa[x][]) continue;
dfs2(y);//递归整棵树
}
b1[dep[x]]+=st[x];
for(int i=head1[x]; i; i=edge1[i].next)//h1是用链式前向星存的每个点作为终点的路径集合
{
int y=edge1[i].to;
b2[dis[y]-dep[t[y]]+maxn]++;//根据前面的等式。方法类似雨后的尾巴
}
ans[x]+=b1[w[x]+dep[x]]-t1+b2[w[x]-dep[x]+maxn]-t2;//加上差值
///////未完待续////////
}
我们不能忘记一点:树是递归进行操作的。
什么意思?还记得之前的约束条件吗?统计答案时$lca(u,v)$必然不能存在于子树中。所以当点i作为lca(u,v)时,统计完答案后要减去$(u,v)$对i的贡献。因为$(u,v)$的贡献对于i的祖先是不合法的。
for(int i=head2[x]; i; i=edge2[i].next)//h2是链式前向星存的每个点作为lca的路径集合
{
int y=edge2[i].to;
b1[dep[s[y]]]--;
b2[dis[y]-dep[t[y]]+maxn]--;
}
主函数主要代码:
for (int i=;i<=m;i++)
{
s[i]=read(),t[i]=read();
int ll=lca(s[i],t[i]);
dis[i]=dep[s[i]]+dep[t[i]]-*dep[ll];
st[s[i]]++;//统计以此点作为起点的路径条数
add1(t[i],i);//存
add2(ll,i);
if (dep[ll]+w[ll]==dep[s[i]]) ans[ll]--;//防止重复统计:当路径起点或终点恰好为两点LCA时且LCA处可以观察到运动员
}
注意数组下标的平移。时间复杂度$O(nlogn)$。
完整代码:
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int maxn=;
int n,m;
int fa[maxn][],dep[maxn],b1[maxn*],b2[maxn*];
int dis[maxn],ans[maxn],s[maxn],t[maxn],st[maxn],w[maxn];
int head[maxn*],cnt,head1[maxn*],cnt1,head2[maxn*],cnt2;
struct node
{
int next,to;
}edge[maxn*],edge1[maxn*],edge2[maxn*];
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if (ch=='-') f=-;ch=getchar();}
while(isdigit(ch)){x=x*+ch-'';ch=getchar();}
return x*f;
}
void add(int x, int y)
{
edge[++cnt].to=y;
edge[cnt].next=head[x];
head[x]=cnt;
}
void add1(int x, int y)
{
edge1[++cnt1].to=y;
edge1[cnt1].next=head1[x];
head1[x]=cnt1;
}
void add2(int x, int y)
{
edge2[++cnt2].to=y;
edge2[cnt2].next=head2[x];
head2[x]=cnt2;
}
inline void dfs1(int now)
{
for (int i=;(<<i)<=dep[now];i++)
fa[now][i]=fa[fa[now][i-]][i-];
for (int i=head[now];i;i=edge[i].next)
{
int to=edge[i].to;
if (to==fa[now][]) continue;
fa[to][]=now;
dep[to]=dep[now]+;
dfs1(to);
}
}
inline int lca(int x,int y)
{
if (x==y) return x;
if (dep[x]<dep[y]) swap(x,y);
int t=log(dep[x]-dep[y])/log();
for (int i=t;i>=;i--)
{
if (dep[fa[x][i]]>=dep[y])
x=fa[x][i];
if (x==y) return x;
}
t=log(dep[x])/log();
for (int i=t;i>=;i--)
{
if (fa[x][i]!=fa[y][i])
x=fa[x][i],y=fa[y][i];
}
return fa[x][];
}
void dfs2(int x)
{
int t1=b1[w[x]+dep[x]], t2=b2[w[x]-dep[x]+maxn];
for(int i=head[x]; i; i=edge[i].next)
{
int y=edge[i].to;
if(y==fa[x][]) continue;
dfs2(y);
}
b1[dep[x]]+=st[x];
for(int i=head1[x]; i; i=edge1[i].next)
{
int y=edge1[i].to;
b2[dis[y]-dep[t[y]]+maxn]++;
}
ans[x]+=b1[w[x]+dep[x]]-t1+b2[w[x]-dep[x]+maxn]-t2;
for(int i=head2[x]; i; i=edge2[i].next)
{
int y=edge2[i].to;
b1[dep[s[y]]]--;
b2[dis[y]-dep[t[y]]+maxn]--;
}
} signed main()
{
n=read(),m=read();
for (int i=;i<n;i++)
{
int x=read(),y=read();
add(x,y);add(y,x);
}
dep[]=;fa[][]=;
dfs1();
for (int i=;i<=n;i++) w[i]=read();
for (int i=;i<=m;i++)
{
s[i]=read(),t[i]=read();
int ll=lca(s[i],t[i]);
dis[i]=dep[s[i]]+dep[t[i]]-*dep[ll];
st[s[i]]++;
add1(t[i],i);
add2(ll,i);
if (dep[ll]+w[ll]==dep[s[i]]) ans[ll]--;
}
dfs2();
for (int i=;i<=n;i++) printf("%lld ",ans[i]);
return ;
}
【NOIP2016】天天爱跑步 题解(LCA+桶+树上差分)的更多相关文章
- NOIP2016天天爱跑步 题解报告【lca+树上统计(桶)】
题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.«天天爱跑步»是一个养成类游戏,需要玩家每天按时上线,完成打卡任务. 这个游戏的地图可以看作一一棵包含 nn个 ...
- [NOIP2016]天天爱跑步 题解(树上差分) (码长短跑的快)
Description 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.<天天爱跑步>是一个养成类游戏,需要 玩家每天按时上线,完成打卡任务.这个游戏的地图 ...
- [NOIP2016]天天爱跑步-题解
题面传送门 解答 设第\(j\)号玩家在\(V_j\)时刻出发. 弱化问题:如果树退化成了一条链.则在\(j\)处的观察员能观察到的\(i\)号玩家当且仅当 \[ i玩家经过j,且 \begin{ca ...
- NOIP2016(D1T2)天天爱跑步题解
首先声明这不是一篇算法独特的题解,仍然是"LCA+桶+树上差分",但这篇题解是为了让很多很多看了很多题解仍然看不懂的朋友们看懂的,其中就包括我,我也在努力地把解题的"思维 ...
- [Noip2016]天天爱跑步 LCA+DFS
[Noip2016]天天爱跑步 Description 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.?天天爱跑步?是一个养成类游戏,需要玩家每天按时上线,完成打卡任 ...
- 「NOIP2016」天天爱跑步 题解
(声明:图片来源于网络) 「NOIP2016」天天爱跑步 题解 题目TP门 题目 题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.<天天爱跑步>是 ...
- Noip 2016 天天爱跑步 题解
[NOIP2016]天天爱跑步 时间限制:2 s 内存限制:512 MB [题目描述] 小C同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.<天天爱跑步>是 ...
- [NOIp2016]天天爱跑步 线段树合并
[NOIp2016]天天爱跑步 LG传送门 作为一道被毒瘤出题人们玩坏了的NOIp经典题,我们先不看毒瘤的"动态爱跑步"和"天天爱仙人掌",回归一下本来的味道. ...
- 【LG1600】[NOIP2016]天天爱跑步
[LG1600][NOIP2016]天天爱跑步 题面 洛谷 题解 考虑一条路径\(S\rightarrow T\)是如何给一个观测点\(x\)造成贡献的, 一种是从\(x\)的子树内出来,另外一种是从 ...
随机推荐
- C#几种单例模式
/** * 单例模式-饿汉式 */ public class Singleton { // 在定义的时候就初始化_instance, private static Singleton _instanc ...
- 方正璞华Java面试总结(武汉)
方正璞华Java面试总结(武汉) 现在社会急缺复合型人才,计算机与日语的结合,具备这两种能力的人不愁工作,最后他们大多到的也是日企,甚至到日本去工作.至今为止接触的日企有光庭.方正璞华.先锋·商泰.英 ...
- 深入理解JVM(③)线程与Java的线程
前言 我们都知道,线程是比进程更轻量级的调度执行单位,线程的引入,可以把一个进程的资源分配和执行调度分开,各个线程既可以共享进程资源调度(内存地址.文件I/O等),又可以独立调度. 线程的实现 主流的 ...
- 数据可视化之powerBI基础(一) 如何查看PowerBI图表背后的数据
https://zhuanlan.zhihu.com/p/64405494 图表很直观,但有时候我们不仅想看图,也想更进一步查看生成该图表的明细数据,在PowerBI中有三种方式. (一)在图表上单击 ...
- 数据可视化之powerBI入门(十三)CALCULATE函数的最佳搭档:FILTER
https://zhuanlan.zhihu.com/p/64383000 介绍过CALCULATE函数之后,有必要再介绍它的最佳搭档:FILTER函数. CALCULATE函数的第二个及之后的参数是 ...
- 机器学习实战基础(三十七):随机森林 (四)之 RandomForestRegressor 重要参数,属性与接口
RandomForestRegressor class sklearn.ensemble.RandomForestRegressor (n_estimators=’warn’, criterion=’ ...
- Java实现导入导出Excel:POI和EasyExcel
文章与CSDN同步,欢迎访问:https://blog.csdn.net/qq_40280582/article/details/107300081 代码地址:https://gitee.com/il ...
- 聊聊Mysql主从同步读写分离配置实现
Hi,各位热爱技术的小伙伴您们好,好久没有写点东西了,今天写点关于mysql主从同步配置的操作日志同大家一起分享.最近自己在全新搭建一个mysql主从同步读写分离数据库简单集群,我讲实际操作步骤整理分 ...
- 像写Flutter一样开发Android原生应用
要问到Flutter和Android原生App,在开发是有何区别,编程方式是绕不开的话题.Flutter采用声明式编程,Android原生开发则采用命令式编程. 声明式编程 VS. 命令式编程 我们首 ...
- oracle 在物理机上添加磁盘操作
物理机上添加磁盘操作 注意:1)物理机上添加磁盘操作,不涉及到start_udev的动作.2)磁盘分区的操作,需要谨慎进行,核准无误后再操作. (1)查看磁盘名称命名 # su - grid$ sql ...