配置hadoop环境

配置flume环境

配置flume文件

D:\Soft\apache-flume-1.8.0-bin\conf

将 flume-conf.properties.template 重新命名为  hdfs.properties

# 组装 agent
a1.sources = s1
a1.channels = c1
a1.sinks = k1

# 配置source:从目录中读取文件
a1.sources.s1.type = spooldir
a1.sources.s1.channels = c1
a1.sources.s1.spoolDir = E:\log2s
# 包括所有日志文件
a1.sources.s1.includePattern=^.*$
# 忽略当前正在写入的日志文件
a1.sources.s1.ignorePattern=^.*log$
a1.sources.s1.deletePolicy=never
a1.sources.s1.fileHeader = true
## 增加时间header
a1.sources.s1.interceptors=i1
a1.sources.s1.interceptors.i1.type=timestamp

# 配置channel:缓存到文件中
a1.channels.c1.type = memory
a1.channels.c1.capacity = 10000
a1.channels.c1.transactionCapacity = 1000

# 配置sink:保存到hdfs中
a1.sinks.k1.channel=c1
a1.sinks.k1.type=hdfs
a1.sinks.k1.hdfs.path=hdfs://127.0.0.1:9000/flume/accesslog/%Y-%m-%d
a1.sinks.k1.hdfs.filePrefix=logs
a1.sinks.k1.hdfs.rollInterval=10
a1.sinks.k1.hdfs.rollSize=0
a1.sinks.k1.hdfs.rollCount=0
a1.sinks.k1.hdfs.batchSize=100
a1.sinks.k1.hdfs.writeFormat=Text
a1.sinks.k1.hdfs.minBlockReplicas=1
flume启动命令

flume-ng agent --conf conf --conf-file ../conf/hdfs.properties --name a1

编写日志java程序

public class App
{
  protected static final Logger logger = Logger.getLogger(App.class);   public static void main( String[] args )
  {
    while (true) {
    logger.info("hello world:"+ String.valueOf(new Date().getTime()));
    try {
      Thread.sleep(500);
    } catch (InterruptedException e) {
      e.printStackTrace();
      }
    }
  }
}

log4j配置

### set log levels ###
log4j.rootLogger=INFO, stdout, file

### stdout ###
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Threshold=INFO
log4j.appender.stdout.Target=System.out
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %c{1} [%p] %m%n

### file ###
log4j.appender.file=org.apache.log4j.DailyRollingFileAppender
# 日志路径
log4j.appender.file.file=E:/log2s/log.log
log4j.appender.file.Threshold=INFO
log4j.appender.file.Append=true
# 每分钟生成1个新文件
log4j.appender.file.DatePattern='.'yyyy-MM-dd-HH-mm
log4j.appender.file.layout=org.apache.log4j.PatternLayout
log4j.appender.file.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %c{1} [%p] %m%n

启动java程序生成日志

flume执行结果

07/24 17:19:27 INFO node.Application: Starting Channel c1
07/24 17:19:27 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: CHANNEL, name: c1: Successfully registered new MBean.
07/24 17:19:27 INFO instrumentation.MonitoredCounterGroup: Component type: CHANNEL, name: c1 started
07/24 17:19:27 INFO node.Application: Starting Sink k1
07/24 17:19:27 INFO node.Application: Starting Source s1
07/24 17:19:27 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SINK, name: k1: Successfully registered new MBean.
07/24 17:19:27 INFO source.SpoolDirectorySource: SpoolDirectorySource source starting with directory: E:log2s
07/24 17:19:27 INFO instrumentation.MonitoredCounterGroup: Component type: SINK, name: k1 started
07/24 17:19:27 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: s1: Successfully registered new MBean.
07/24 17:19:27 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: s1 started
07/24 17:19:28 INFO avro.ReliableSpoolingFileEventReader: Last read took us just up to a file boundary. Rolling to the next file, if there is one.
07/24 17:19:28 INFO avro.ReliableSpoolingFileEventReader: Preparing to move file E:\log2s\log.log.2018-07-24-16-46 to E:\log2s\log.log.2018-07-24-16-46.COMPLETED
07/24 17:19:28 INFO avro.ReliableSpoolingFileEventReader: Last read took us just up to a file boundary. Rolling to the next file, if there is one.
07/24 17:19:28 INFO avro.ReliableSpoolingFileEventReader: Preparing to move file E:\log2s\log.log.2018-07-24-16-47 to E:\log2s\log.log.2018-07-24-16-47.COMPLETED
07/24 17:19:28 INFO hdfs.HDFSSequenceFile: writeFormat = Text, UseRawLocalFileSystem = false
07/24 17:19:28 INFO hdfs.BucketWriter: Creating hdfs://127.0.0.1:9000/flume/accesslog/2018-07-24/logs.1532423968027.tmp
07/24 17:19:39 INFO hdfs.BucketWriter: Closing hdfs://127.0.0.1:9000/flume/accesslog/2018-07-24/logs.1532423968027.tmp
07/24 17:19:39 INFO hdfs.BucketWriter: Renaming hdfs://127.0.0.1:9000/flume/accesslog/2018-07-24/logs.1532423968027.tmp to hdfs://127.0.0.1:9000/flume/accesslog/2018-07-24/logs.1532423968027
07/24 17:19:39 INFO hdfs.HDFSEventSink: Writer callback called.
07/24 17:19:59 INFO avro.ReliableSpoolingFileEventReader: Last read took us just up to a file boundary. Rolling to the next file, if there is one.
07/24 17:19:59 INFO avro.ReliableSpoolingFileEventReader: Preparing to move file E:\log2s\log.log.2018-07-24-16-48 to E:\log2s\log.log.2018-07-24-16-48.COMPLETED
07/24 17:20:00 INFO avro.ReliableSpoolingFileEventReader: Last read took us just up to a file boundary. Rolling to the next file, if there is one.
07/24 17:20:00 INFO avro.ReliableSpoolingFileEventReader: Preparing to move file E:\log2s\log.log.2018-07-24-17-19 to E:\log2s\log.log.2018-07-24-17-19.COMPLETED
07/24 17:20:02 INFO hdfs.HDFSSequenceFile: writeFormat = Text, UseRawLocalFileSystem = false
07/24 17:20:02 INFO hdfs.BucketWriter: Creating hdfs://127.0.0.1:9000/flume/accesslog/2018-07-24/logs.1532424002903.tmp
07/24 17:20:13 INFO hdfs.BucketWriter: Closing hdfs://127.0.0.1:9000/flume/accesslog/2018-07-24/logs.1532424002903.tmp
07/24 17:20:13 INFO hdfs.BucketWriter: Renaming hdfs://127.0.0.1:9000/flume/accesslog/2018-07-24/logs.1532424002903.tmp to hdfs://127.0.0.1:9000/flume/accesslog/2018-07-24/logs.1532424002903
07/24 17:20:13 INFO hdfs.HDFSEventSink: Writer callback called.
07/24 17:21:00 INFO hdfs.HDFSSequenceFile: writeFormat = Text, UseRawLocalFileSystem = false
07/24 17:21:00 INFO avro.ReliableSpoolingFileEventReader: Last read took us just up to a file boundary. Rolling to the next file, if there is one.
07/24 17:21:00 INFO avro.ReliableSpoolingFileEventReader: Preparing to move file E:\log2s\log.log.2018-07-24-17-20 to E:\log2s\log.log.2018-07-24-17-20.COMPLETED
07/24 17:21:00 INFO hdfs.BucketWriter: Creating hdfs://127.0.0.1:9000/flume/accesslog/2018-07-24/logs.1532424060382.tmp
07/24 17:21:10 INFO hdfs.BucketWriter: Closing hdfs://127.0.0.1:9000/flume/accesslog/2018-07-24/logs.1532424060382.tmp
07/24 17:21:10 INFO hdfs.BucketWriter: Renaming hdfs://127.0.0.1:9000/flume/accesslog/2018-07-24/logs.1532424060382.tmp to hdfs://127.0.0.1:9000/flume/accesslog/2018-07-24/logs.1532424060382
07/24 17:21:10 INFO hdfs.HDFSEventSink: Writer callback called.

HDFS目录

flume读取日志文件并存储到HDFS的更多相关文章

  1. 大数据学习day20-----spark03-----RDD编程实战案例(1 计算订单分类成交金额,2 将订单信息关联分类信息,并将这些数据存入Hbase中,3 使用Spark读取日志文件,根据Ip地址,查询地址对应的位置信息

    1 RDD编程实战案例一 数据样例 字段说明: 其中cid中1代表手机,2代表家具,3代表服装 1.1 计算订单分类成交金额 需求:在给定的订单数据,根据订单的分类ID进行聚合,然后管理订单分类名称, ...

  2. Java实时读取日志文件

    古怪的需求 在实习的公司碰到一个古怪的需求:在一台服务器上写日志文件,每当日志文件写到一定大小时,比如是1G,会将这个日志文件改名成另一个名字,并新建一个与原文件名相同的日志文件,再往这个新建的日志文 ...

  3. 读取日志文件,搜索关键字,打印关键字前5行。yield、deque实例

    from collections import deque def search(lines, pattern, history=5): previous_lines = deque(maxlen=h ...

  4. Flume采集处理日志文件

    Flume简介 Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集.聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据:同时,Flume提供对数据 ...

  5. Docker 搭建 ELK 读取微服务项目的日志文件

    思路: 在docker搭建elasticsearch与kibana来展示日志,在微服务部署的机子上部署logstash来收集日志传到elasticsearch中,通过kibana来展示,logstas ...

  6. Flume 自定义拦截器 多行读取日志+截断

    前言: Flume百度定义如下: Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集.聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据:同时,F ...

  7. SCCM2007日志文件

    Microsoft System Center Configuration Manager 2007 中的所有客户端和站点服务器组件都将过程信息记录在单个日志文件中.您可以使用客户端和站点服务器日志文 ...

  8. logback.xml日志文件配置

    放在resources目录下面就可以自动读取<?xml version="1.0" encoding="UTF-8"?> <configura ...

  9. Django实现web端tailf日志文件

    这是Django Channels系列文章的第二篇,以web端实现tailf的案例讲解Channels的具体使用以及跟Celery的结合 通过上一篇<Django使用Channels实现WebS ...

随机推荐

  1. java 启动Tomcat报错:The specified JRE installation does not exist

    启动TomCat服务报错: The specified JRE installation does not exist 解决方法: Eclipse:window->perferences-> ...

  2. java数组与数组异常

    一 数组的定义 1.第一种定义方法: 格式: 数据类型[] 数组名=new 数据类型[数组长度] 2.第二种定义方法: 格式: 类型[] 数组名 = new 类型[]{元素,元素,.....} 3.第 ...

  3. JavaScript 中 Blob对象的初步认识

    Blob Binary Large Object的缩写,二进制大对象 虽然在前端中开发并不常见,但是实际上MySql数据库中,可以通过设置一个Blob类型的数据来存储一个Blob对象的内容 语法 le ...

  4. .Net 桌面程序(winform,wpf,跨平台avalonia)打安装包部署到windows 入门

    .Net 桌面程序(winform,wpf,跨平台avalonia)部署到windows 入门 本文以为avalonia为例,用Setup Factory 将.Net桌面程序(winform,wpf, ...

  5. 编译原理——求解First,Follow,Firstvt和Lastvt集合

    转载地址 http://dongtq2010.blog.163.com/blog/static/1750224812011520113332714/ 学编译原理的时候,印象最深的莫过于这四个集合了,而 ...

  6. 面经手册 · 第4篇《HashMap数据插入、查找、删除、遍历,源码分析》

    作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言 在上一章节我们讲解并用数据验证了,HashMap中的,散列表的实现.扰动函数.负载因 ...

  7. Mybatis-04-分页

    分页 思考:为什么要分页? 减少数据的处理量 1 使用limit分页 select * from user limit startIndex,pageSize;

  8. 序列化流(ObjectOutputStream、ObjectInputStream)

    1.序列化流(ObjectOutputStream) package demo10.objstream; /* java.io.ObjectOutputStream extends OutputStr ...

  9. 国人开源了一款超好用的 Redis 客户端,真香!!

    大家都知道,Redis Desktop Manager 是一款非常好用的 Redis 可视化客户端工具,但可惜的是 v0.9.4 版本之后需要收费了: 这个工具不再免费提供安装包了,要对所有安装包收费 ...

  10. PHP基础之常量与变量

    1.变量:用来存储信息的空间大小 $var 2.常量:定义之后不可以更改,标识符,并且给其赋值,常量是全局,在整个页面中均可使用,常量一般有英文字母.下划线.数字组成,开头不能是数字和$ 使用defi ...