文章转自公众号【机器学习炼丹术】,关注回复“炼丹”即可获得海量免费学习资料哦!


为什么现在还要学习随机森林?

随机森林中仍有两个未解之谜(对我来说)。随机森林采用的bagging思想中怎么得到的62.3% 以及 随机森林和bagging的方法是否有区别。

随机森林(Random Forest)就是通过集成学习的思想将多棵决策树集成的一种算法。基本单元是决策树。随机森林算法的提出也是为了改善决策树容易存在过拟合的情况。

1 随机森林

习惯上,我们将众多分类器(SVM、Logistic回归、决策树等)所组成的“总的分类器”,叫做随机森林。随机森林有两个关键词,一个是“随机”,一个是“森林”。森林就是成百上千棵树,体现了集成的思想,随机将会在下面总结到。

2 bagging

Bagging,其实就是bootstrap aggregating的缩写, 两者是等价的,其核心就是有放回抽样

【bagging具体步骤】

  1. 从大小为n的样本集中有放回地重采样选出n个样本;(没错就是n个样本抽取n个)
  2. 在所有属性上,对这n个样本建立分类器(ID3信息增益、C4.5信息增益率、CART基尼系数、SVM、Logistic回归等)
  3. 重复以上两步m次,即获得了m个分类器;
  4. 将预测数据放在这m个分类器上,最后根据这m个分类器的投票结果,决定数据属于哪一类。

3 神秘的63.2%

一般被大家知晓的是:随机森林中每一次采样的比例是63.2%。 这个比例到底是怎么确定的呢?

在某手的面试中,我被问到了这个相关的问题,奈何学艺不精,哎。后来苦苦研究15分钟,终于得到答案,现在分享给大家。


bagging的最初的说法其实是:n个样本从中有放回抽样n次,这种条件下,势必会有抽取到相同样本的可能性,那么抽取到不同样本的期望值是多少呢?其实大家心里可能会有答案了,没错就是0.632n

我们假设\(U(k)\)表示第k次抽样抽取到不同样本的概率。那么\(U(k-1)\)则表示第k-1次抽样抽取到不同样本的概率。

  • 第k-1次抽样到不同样本的概率:\(U(k-1)\)
  • 第k-1次抽样时,有\(nU(k-1)\)个样本还没有被抽取
  • 第k次抽样时,还有\(nU(k-1)-U(k-1)\)的样本没有抽取
  • 因此\(U(k)=\frac{n-1}{n}U(k-1)=(\frac{n-1}{n})^{k-1}U(1)\)
  • \(U(1)=1\),第一次抽样的数据一定不会重复

因此k次放回抽样的不同样本的期望值为:

\(\sum^{k-1}_{i=1}{U(i)}=1+\frac{n-1}{n}+(\frac{n-1}{n})^2+…\)

利用等比数列的性质,得到:

\(\sum^{k-1}_{i=1}{U(i)}=(1-(\frac{n-1}{n})^k)n\)

当n足够大,并且k=n的情况下,上面的公式等于

\[(1-(\frac{n-1}{n})^k)n=(1-\frac{1}{e})n\approx 0.632n
\]

所以证明完毕,每一次bagging采样重复抽取n次其实只有63.2%的样本会被采样到。


4 随机森林 vs bagging

随机森林(Random Forest)在Bagging基础上进行了修改。 具体步骤可以总结如下:

  1. 从训练样本集中采用Bootstrap的方法有放回地重采样选出n个样本,即每棵树的训练数据集都是不同的 ,里面包含重复的训练样本(这意味着随机森林并不是按照bagging的0.632比例采样 );

  2. 从所有属性中有选择地选出K个属性,选择最佳属性作为节点建立CART决策树;

  3. 重复以上步骤m次,即建立了m棵CART决策树

  4. 这m个CART形成随机森林,通过投票表决分类结果,决定数据是属于哪一类。

随机森林(Random Forest)的随机性主要体现在两方面,一方面是样本随机,另一方面是属性随机。样本随机的原因是如果样本不随机,每棵树的训练数据都一样,那么最终训练出的分类结果也是完全一样的。

5 投票策略

  1. 少数服从多数
  2. 一票否决
  3. 听说还有贝叶斯平均的方法。但是我没有过多了解。一般还是用少数服从多数的吧。

6 随机森林的特点

6.1 优点

  1. 在当前的算法中,具有极好的准确率
  2. 能够运行在大数据上
  3. 能够处理具有高维特征的输入样本,不需要降维
  4. 能够计算各个特征的重要度
  5. 能够防止过拟合

6.2 bias 与 variance

说到机器学习模型的误差,主要就是bias和variance。

  • Bias:如果一个模型的训练错误大,然后验证错误和训练错误都很大,那么这个模型就是高bias。可能是因为欠拟合,也可能是因为模型是弱分类器。

  • Variance:模型的训练错误小,但是验证错误远大于训练错误,那么这个模型就是高Variance,或者说它是过拟合。



这个图中,左上角是低偏差低方差的,可以看到所有的预测值,都会落在靶心,完美模型;

右上角是高偏差,可以看到,虽然整体数据预测的好像都在中心,但是波动很大。

【高偏差vs高方差】

在机器学习中,因为偏差和方差不能兼顾,所以我们一般会选择高偏差、低方差的左下角的模型。稳定性是最重要的,宁可所有的样本都80%正确率,也不要部分样本100%、部分50%的正确率。个人感觉,稳定性是学习到东西的体现,高方差模型与随机蒙的有什么区别?

6.3 随机森林降低偏差证明

上面的可能有些抽象,这里用RandomForest(RF)来作为例子:

随机森林是bagging的集成模型,这里:

\(RF(x)=\frac{1}{B}\sum^B_{i=1}{T_{i,z_i}(x)}\)

  • RF(x)表示随机森林对样本x的预测值;
  • B表示总共有B棵树;
  • \(z_i\)表示第i棵树所使用的训练集,是使用bagging的方法,从所有训练集中进行行采样和列采样得到的子数据集。

这里所有的\(z\),都是从所有数据集中随机采样的,所以可以理解为都是服从相同分布的。所以不断增加B的数量,增加随机森林中树的数量,是不会减小模型的偏差的。

【个人感觉,是因为不管训练再多的树,其实就那么多数据,怎么训练都不会减少,这一点比较好理解】

【RF是如何降低偏差的?】

直观上,使用多棵树和bagging,是可以增加模型的稳定性的。怎么证明的?


我们需要计算\(Var(T(x))\)

假设不同树的\(z_i\)之间的相关系数为\(\rho\),然后每棵树的方差都是\(\sigma^2\).

先复习一下两个随机变量相加的方差如何表示:

\(Var(aX+bY)=a^2 Var(X)+b^2 Var(Y) + 2ab cov(X,Y)\)

  • Cov(X,Y)表示X和Y的协方差。协方差和相关系数不一样哦,要除以X和Y的标准差:

    \(\rho=\frac{cov(X,Y)}{\sigma_X \sigma_Y}\)

下面转成B个相关变量的方差计算,是矩阵的形式:



很好推导的,可以试一试。

这样可以看出来了,RF的树的数量越多,RF方差的第二项会不断减小,但是第一项不变。也就是说,第一项就是RF模型偏差的下极限了。

【总结】

  • 增加决策树的数量B,偏差不变;方差减小;
  • 增加决策树深度,偏差减小;\(\rho\)减小,\(\sigma^2\)增加;
  • 增加bagging采样比例,偏差减小;\(\rho\)增加,\(\sigma^2\)增加;

【bagging vs boost】

之前的文章也提到过了boost算法。

GBDT中,在某种情况下,是不断训练之前模型的残差,来达到降低bias的效果。虽然也是集成模型,但是可以想到,每一个GBDT中的树,所学习的数据的分布都是不同的,这意味着在GBDT模型的方差会随着决策树的数量增多,不断地增加。

  • bagging的目的:降低方差;
  • boost的目的:降低偏差

【小白学AI】随机森林 全解 (从bagging到variance)的更多相关文章

  1. 【小白学AI】XGBoost 推导详解与牛顿法

    文章转自公众号[机器学习炼丹术],关注回复"炼丹"即可获得海量免费学习资料哦! 目录 1 作者前言 2 树模型概述 3 XGB vs GBDT 3.1 区别1:自带正则项 3.2 ...

  2. 【小白学AI】XGBoost推导详解与牛顿法

    文章来自微信公众号:[机器学习炼丹术] 目录 1 作者前言 2 树模型概述 3 XGB vs GBDT 3.1 区别1:自带正则项 3.2 区别2:有二阶导数信息 3.3 区别3:列抽样 4 XGB为 ...

  3. 【小白学AI】GBDT梯度提升详解

    文章来自微信公众号:[机器学习炼丹术] 文章目录: 目录 0 前言 1 基本概念 2 梯度 or 残差 ? 3 残差过于敏感 4 两个基模型的问题 0 前言 先缕一缕几个关系: GBDT是gradie ...

  4. 机器学习方法(六):随机森林Random Forest,bagging

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 前面机器学习方法(四)决策树讲了经典 ...

  5. 【小白学AI】八种应对样本不均衡的策略

    文章来自:微信公众号[机器学习炼丹术] 目录 1 什么是非均衡 2 8种解决办法 2.1 重采样(四种方法) 2.2 调整损失函数 2.3 异常值检测框架 2.4 二分类变成多分类 2.5 EasyE ...

  6. 【小白学AI】线性回归与逻辑回归(似然参数估计)

    文章转自[机器学习炼丹术] 线性回归解决的是回归问题,逻辑回归相当于是线性回归的基础上,来解决分类问题. 1 公式 线性回归(Linear Regression)是什么相比不用多说了.格式是这个样子的 ...

  7. 04-10 Bagging和随机森林

    目录 Bagging算法和随机森林 一.Bagging算法和随机森林学习目标 二.Bagging算法原理回顾 三.Bagging算法流程 3.1 输入 3.2 输出 3.3 流程 四.随机森林详解 4 ...

  8. 机器学习总结(二)bagging与随机森林

    一:Bagging与随机森林 与Boosting族算法不同的是,Bagging和随机森林的个体学习器之间不存在强的依赖关系,可同时生成并行化的方法. Bagging算法 bagging的算法过程如下: ...

  9. 随机森林和GBDT

    1. 随机森林 Random Forest(随机森林)是Bagging的扩展变体,它在以决策树 为基学习器构建Bagging集成的基础上,进一步在决策树的训练过程中引入了随机特征选择,因此可以概括RF ...

随机推荐

  1. css的一些小技巧。修改input样式

    在第一次正式写项目的时候,遇到了几个布局的小技巧.记录一下. 我们常常会遇到图片和文字对齐的一种样式.比如 这样的样式,我们写的时候有时候会出现不对齐的情况.我们有俩种方法 一种就是flex的布局,还 ...

  2. EOJ Monthly 2019.11 A(进制转换)

    "欢迎您乘坐东方航空公司航班 MU5692 由银川前往上海......" "我们的飞机很快就要起飞了,请收起小桌板,摘下耳机......" 收起了小桌板,摘下了 ...

  3. 最大连续区间(HDU-1540)

    HDU1540 线段树最大连续区间. 给定长度为n的数组,m次操作. 操作D,删除给定节点. 操作R,恢复最后一个删除的节点. 操作Q,询问给定节点的最大连续区间 维护三个值,区间的最大左连续区间,最 ...

  4. 5.pandas新增数据列

    有的时候,表格自带的数据根本没有办法满足我们,我们经常会新加一列数据或者对原有的数据进行修改 还是接着上篇文章的数据进行操作 直接赋值 我想算一下每一天的温差 df.loc[:, 'wencha'] ...

  5. 使用AB对Nginx压测和并发预估

    简介 ab命令会创建多个并发访问线程,模拟多个访问者同时对某一URL地址进行访问.它的测试目标是基于URL的. # 1.ab每次只能测试一个URL,适合做重复压力测试 # 2.参数很多,可以支持添加c ...

  6. PHP - AJAX 与 MySQL-AJAX 数据库实例

    PHP - AJAX 与 MySQL AJAX 可用来与数据库进行交互式通信. AJAX 数据库实例 下面的实例将演示网页如何通过 AJAX 从数据库读取信息: 本教程使用到的 Websites 表 ...

  7. 什么是 PHP SimpleXML?

    PHP SimpleXML PHP SimpleXML 处理最普通的 XML 任务,其余的任务则交由其它扩展处理. 什么是 PHP SimpleXML? SimpleXML 是 PHP 5 中的新特性 ...

  8. PHP curl_version函数

    (PHP 5 >= 5.5.0) curl_version — 获取cURL版本信息. 说明 array curl_version ([ int $age = CURLVERSION_NOW ] ...

  9. PHP date_offset_get() 函数

    ------------恢复内容开始------------ 实例 返回奥斯陆(在欧洲挪威)冬天和夏天相对于 UTC 的以秒计的时区偏移量: <?php$winter=date_create(& ...

  10. Scala---初探

    scala语言量大特性:面向对象+函数式编程 Scala的类型 val指的是引用不可变,而不是值. 值类型 Byte Char Short Int Long Float Double 引用类型 Str ...