bzoj 4305 数列的GCD
LINK:数列的GCD
题意:
给出一个长度为N的数列{a[n]},1<=a[i]<=M(1<=i<=N)。
现在问题是,对于1到M的每个整数d,有多少个不同的数列b[1], b[2], ..., b[N],满足:
(1)1<=b[i]<=M(1<=i<=N);
(2)gcd(b[1], b[2], ..., b[N])=d;
(3)恰好有K个位置i使得\(a_i\neq b_i\)(1<=i<=N)
注:gcd(x1,x2,...,xn)为x1, x2, ..., xn的最大公约数。
输出答案对1,000,000,007取模的值。
我没能想出来这道题 感觉有点虚。应该多思考一下的。
有K个位置恰好不相等 n-K个位置恰好相等 设当前处理的gcd为d 那么a序列能和b序列刚好相等的数的个数为M.M为a序列中为d的倍数的个数。
那么有C(M,n-k)的方案 剩下的方案 考虑这M-n+k个位置只有\(\lfloor \frac{M}{d}\rfloor-1\)种可能。
这里注意是排列 不是组合(我傻了想成这里运用隔板法了 剩下的 n-M个位置 就有\(\lfloor \frac{M}{d}\rfloor\)可能。
最后发现 有不合法的情况可以发现不合法的情况为gcd为d的倍数 所以此时把d的倍数的答案都减掉即可。
const int MAXN=300010;
int n,m,k;
int a[MAXN],vis[MAXN];
ll fac[MAXN],inv[MAXN],ans[MAXN];
inline ll ksm(ll b,int p){if(p<0)return 0;ll cnt=1;while(p){if(p&1)cnt=cnt*b%mod;b=b*b%mod;p=p>>1;}return cnt;}
inline ll C(int a,int b){if(a<b)return 0;return fac[a]*inv[b]%mod*inv[a-b]%mod;}
int main()
{
freopen("1.in","r",stdin);
get(n);get(m);get(k);fac[0]=1;k=n-k;
rep(1,n,i)++vis[get(a[i])],fac[i]=fac[i-1]*i%mod;
inv[n]=ksm(fac[n],mod-2);
fep(n-1,0,i)inv[i]=inv[i+1]*(i+1)%mod;
fep(m,1,i)
{
ll cnt=0,sum=vis[i];
for(int j=2;j*i<=m;++j)cnt=(cnt+ans[j*i])%mod,sum+=vis[i*j];
ans[i]=C(sum,k)*ksm(m/i-1,sum-k)%mod*ksm(m/i,n-sum)%mod;
ans[i]=(ans[i]-cnt+mod)%mod;
}
rep(1,m,i)printf("%lld ",ans[i]);
return 0;
}
bzoj 4305 数列的GCD的更多相关文章
- BZOJ 4305: 数列的GCD( 数论 )
对于d, 记{ai}中是d的倍数的数的个数为c, 那么有: 直接计算即可,复杂度O(NlogN+MlogM) --------------------------------------------- ...
- 【BZOJ 4305】 4305: 数列的GCD (数论)
4305: 数列的GCD Description 给出一个长度为N的数列{a[n]},1<=a[i]<=M(1<=i<=N). 现在问题是,对于1到M的每个整数d,有多少个不 ...
- 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)
首先我们来看一道题 BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...
- bzoj 4303 数列
bzoj 4303 数列 二维 \(KD-Tree\) 模板题. \(KD-Tree\) 虽然在更新和查询的方式上类似于线段树,但其本身定义是类似于用 \(splay/fhq\ treap\) 维护区 ...
- [BZOJ 2989]数列(二进制分组+主席树)
[BZOJ 2989]数列(二进制分组+主席树) 题面 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[ ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- [BZOJ 2989]数列(CDQ 分治+曼哈顿距离与切比雪夫距离的转化)
[BZOJ 2989]数列(CDQ 分治) 题面 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[y]| ...
- BZOJ.4052.[Cerc2013]Magical GCD(思路)
BZOJ \(Description\) 给定\(n\)个数的序列\(a_i\).求所有连续子序列中,序列长度 × 该序列中所有数的gcd 的最大值. \(n\leq10^5,\ a_i\leq10^ ...
- bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
随机推荐
- Java基础-线程与并发1
线程与并发 Thread 基本概念 程序: 一组计算机能识别和执行的指令 ,是静态的代码. 进程: 程序的一次运行活动, 运行中的程序 . 线程: 进程的组成部分,它代表了一条顺序的执行流. 进程线程 ...
- UVA - 11300 Spreading the Wealth(数学题)
UVA - 11300 Spreading the Wealth [题目描述] 圆桌旁边坐着n个人,每个人有一定数量的金币,金币的总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金 ...
- Report,又是一道思维题
题目: Each month Blake gets the report containing main economic indicators of the company "Blake ...
- 【题解】p1809 过河问题
原题传送门 题目分析 现有n个人在东岸,要过河去西岸.开始东岸有一艘船,船最多可承载2人,过河时间以耗时最长的人所需时间为准. 给定n个人的过河时间a,求所有人从东岸到西岸所需的最短时间. 当\(n= ...
- matlab 打包exe
mcc -m gui_abc.m https://blog.csdn.net/hujiameihuxu/article/details/53525373 deploytool app compiler
- Scala 面向对象(十一):特质(接口) 四
1 扩展类的特质 特质可以继承类,以用来拓展该类的一些功能 所有混入该特质的类,会自动成为那个特质所继承的超类的子类 如果混入该特质的类,已经继承了另一个类(A类),则要求A类是特质超类的子类,否则就 ...
- UML学习笔记—基本概念和初始阶段
chpater1 1.什么是分析和设计 分析:对问题和需求的调查研究 设计:满足需求的概念上的解决方案 做正确的事(分析)和正确地做事(设计) 2.什么是Object-Oriented-Analysi ...
- java.lang.NoSuchMethodError: org.apache.poi.ss.usermodel.CellStyle.setVerticalAlignment(Lorg/apache/poi/ss/usermodel/VerticalAlignment;)V
项目里引入了两个不同的 POI 版本 ,可能是版本冲突引起的. 但是奇怪的是 用Eclipse在本地就失败,在公共测试 环境就是OK的,同事用的 edea 编译器也是OK的. Caused by: j ...
- Ethical Hacking - NETWORK PENETRATION TESTING(15)
ARP Poisoning - arpspoof Arpspoof is a tool part of a suit called dsniff, which contains a number of ...
- 区间dp复习 之 tyvj 1198 矩阵连乘
题目描述 一个\(n*m\)矩阵由\(n\)行\(m\)列共\(n*m\)个数排列而成.两个矩阵\(A\)和\(B\)可以相乘当且仅当\(A\)的列数等于\(B\)的行数.一个\(N*M\)的矩阵乘以 ...