LINK:数列的GCD

题意:

给出一个长度为N的数列{a[n]},1<=a[i]<=M(1<=i<=N)。

现在问题是,对于1到M的每个整数d,有多少个不同的数列b[1], b[2], ..., b[N],满足:

(1)1<=b[i]<=M(1<=i<=N);

(2)gcd(b[1], b[2], ..., b[N])=d;

(3)恰好有K个位置i使得\(a_i\neq b_i\)(1<=i<=N)

注:gcd(x1,x2,...,xn)为x1, x2, ..., xn的最大公约数。

输出答案对1,000,000,007取模的值。

我没能想出来这道题 感觉有点虚。应该多思考一下的。

有K个位置恰好不相等 n-K个位置恰好相等 设当前处理的gcd为d 那么a序列能和b序列刚好相等的数的个数为M.M为a序列中为d的倍数的个数。

那么有C(M,n-k)的方案 剩下的方案 考虑这M-n+k个位置只有\(\lfloor \frac{M}{d}\rfloor-1\)种可能。

这里注意是排列 不是组合(我傻了想成这里运用隔板法了 剩下的 n-M个位置 就有\(\lfloor \frac{M}{d}\rfloor\)可能。

最后发现 有不合法的情况可以发现不合法的情况为gcd为d的倍数 所以此时把d的倍数的答案都减掉即可。

const int MAXN=300010;
int n,m,k;
int a[MAXN],vis[MAXN];
ll fac[MAXN],inv[MAXN],ans[MAXN];
inline ll ksm(ll b,int p){if(p<0)return 0;ll cnt=1;while(p){if(p&1)cnt=cnt*b%mod;b=b*b%mod;p=p>>1;}return cnt;}
inline ll C(int a,int b){if(a<b)return 0;return fac[a]*inv[b]%mod*inv[a-b]%mod;}
int main()
{
freopen("1.in","r",stdin);
get(n);get(m);get(k);fac[0]=1;k=n-k;
rep(1,n,i)++vis[get(a[i])],fac[i]=fac[i-1]*i%mod;
inv[n]=ksm(fac[n],mod-2);
fep(n-1,0,i)inv[i]=inv[i+1]*(i+1)%mod;
fep(m,1,i)
{
ll cnt=0,sum=vis[i];
for(int j=2;j*i<=m;++j)cnt=(cnt+ans[j*i])%mod,sum+=vis[i*j];
ans[i]=C(sum,k)*ksm(m/i-1,sum-k)%mod*ksm(m/i,n-sum)%mod;
ans[i]=(ans[i]-cnt+mod)%mod;
}
rep(1,m,i)printf("%lld ",ans[i]);
return 0;
}

bzoj 4305 数列的GCD的更多相关文章

  1. BZOJ 4305: 数列的GCD( 数论 )

    对于d, 记{ai}中是d的倍数的数的个数为c, 那么有: 直接计算即可,复杂度O(NlogN+MlogM) --------------------------------------------- ...

  2. 【BZOJ 4305】 4305: 数列的GCD (数论)

    4305: 数列的GCD Description 给出一个长度为N的数列{a[n]},1<=a[i]<=M(1<=i<=N).  现在问题是,对于1到M的每个整数d,有多少个不 ...

  3. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  4. bzoj 4303 数列

    bzoj 4303 数列 二维 \(KD-Tree\) 模板题. \(KD-Tree\) 虽然在更新和查询的方式上类似于线段树,但其本身定义是类似于用 \(splay/fhq\ treap\) 维护区 ...

  5. [BZOJ 2989]数列(二进制分组+主席树)

    [BZOJ 2989]数列(二进制分组+主席树) 题面 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[ ...

  6. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  7. [BZOJ 2989]数列(CDQ 分治+曼哈顿距离与切比雪夫距离的转化)

    [BZOJ 2989]数列(CDQ 分治) 题面 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[y]| ...

  8. BZOJ.4052.[Cerc2013]Magical GCD(思路)

    BZOJ \(Description\) 给定\(n\)个数的序列\(a_i\).求所有连续子序列中,序列长度 × 该序列中所有数的gcd 的最大值. \(n\leq10^5,\ a_i\leq10^ ...

  9. bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

随机推荐

  1. How many ways?? HDU - 2157 矩阵快速幂

    题目描述 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的 ...

  2. MyBatis源码分析(二)

    MyBatis的xml配置(核心配置) configuration(配置) properties(属性) settings(设置) typeAliases(类型别名) typeHandlers(类型处 ...

  3. day71 django收尾

    目录 一.Auth模块 1 简介 2 方法总结 3 如何扩展auth_user表 二.bbs表介绍 1 项目开发流程 2 bbs七张表关系 一.Auth模块 1 简介 在我们创建好一个django项目 ...

  4. 电商项目app开发

    购物app的开发 首先我们本次要写的是一个电商的项目,项目主要功能有登录.注册.商品展示.轮播图.加入购物车.购物车管理.支付管理.地址管理.个人信息的修改.商品的分类展示.微信支付等等.主要使用vu ...

  5. 数据可视化之powerBI基础(十九)学会使用Power BI的参数,轻松搞定动态分析

    https://zhuanlan.zhihu.com/p/55295072 静态的分析经常不能满足实际分析的需要,还需要引入动态分析,通过调节某个维度的增减变化来观察对分析结果的影响.在PowerBI ...

  6. 数据可视化之DAX篇(二十五)PowerBI常用的度量值:累计至今

    https://zhuanlan.zhihu.com/p/64999937 经常碰到本年至今.本月至今的数据计算,其实还有一类计算是,从历史最早日期至今的累计计算,比如从开业到现在总共卖出了多少件商品 ...

  7. Django框架11 /form组件、modelForm组件

    Django框架11 /form组件.modelForm组件 目录 Django框架11 /form组件.modelForm组件 1. form组件介绍 2. form常用字段与插件 3. form所 ...

  8. Presto原理及安装

    背景 MapReduce不能满足大数据快速实时adhoc查询计算的性能要求,Facebook2012年开发,2013年开源 是什么 基于内存的并行计算,Facebook推出的分布式SQL交互式查询引擎 ...

  9. bzoj3374[Usaco2004 Mar]Special Serial Numbers 特殊编号*

    bzoj3374[Usaco2004 Mar]Special Serial Numbers 特殊编号 题意: 求比一个数大的最小的一半以上的数位相同的数.数位数≤100. 题解: 模拟题.从低位枚举到 ...

  10. [spring] -- 事务篇

    关于Transactional注解 五个表示隔离级别的常量 TransactionDefinition.ISOLATION_DEFAULT:使用后端数据库默认的隔离级别,Mysql 默认采用的 REP ...