LINK:上学路线

从(0,0)走到(n,m)每次只能向上或者向右走 有K个点不能走求方案数,对P取模.

\(1\leq N,M\leq 10^10 0\leq T\leq 200\)

p=1000003或p=1019663265

考虑dp......(没啥意义.

要求出 从(0,0)到(n,m)不经过一个障碍点的方案数 显然需要容斥. 所有方案C(n+m,n).

还是考虑dp 将T个障碍点排序之后可以发现 后面的点一定不会经过前面的点。

设f[i]表示到达第i个点且不经过前面i-1个点的方案数。我们把终点也当成障碍点 可以发现最后一个f值就是答案辣.

这个是一个很经典的代表元容斥.

考虑到达i这个点 的总方案数 C(\(x_i+y_i,x_i\)).过程中肯定会经过其他的点的。

我们只需要知道经过的第一个不合法的点是谁就可以减掉对应的不合法方案辣。

可以发现这样做把所有的不合法方案都给减掉了。

复杂度T^2. 考虑过程中的组合数怎么做 卢卡斯定理!

P=10000003还好做一点 P=1019663265...

经典套路 摁两下计算器就会了 1019663265=5×3×6793×10007.四个都是质数。

比扩展卢卡斯要简单一点的东西 可以中国剩余定理来解决。

const ll MAXN=1000010,maxn=210;
ll n,m,k,mod,p,xx,yy;
struct wy
{
ll inv[MAXN];
ll fac[MAXN];
ll mod,ans;
}t[5];
ll f[maxn];
struct jl{ll x,y;}s[maxn];
inline ll ksm(ll b,ll p,ll mod)
{
ll cnt=1;//cout<<b<<endl;
while(p)
{
if(p&1)cnt=cnt*b%mod;
b=b*b%mod;p=p>>1;
}
return cnt;
}
inline void prepare()
{
rep(1,p,i)
{
ll maxx=m(i)-1;t[i].fac[0]=1;
rep(1,maxx,j)t[i].fac[j]=t[i].fac[j-1]*j%m(i);
t[i].inv[maxx]=ksm(t[i].fac[maxx],m(i)-2,m(i));
fep(maxx-1,0,j)t[i].inv[j]=t[i].inv[j+1]*(j+1)%m(i);
}
}
inline ll cmp(jl a,jl b){return a.x==b.x?a.y<b.y:a.x<b.x;}
inline ll C(ll p,ll a,ll b){return t[p].fac[a]*t[p].inv[b]%m(p)*t[p].inv[a-b]%m(p);}
inline ll Lucas(ll p,ll a,ll b)
{
if(a<b)return 0;
if(a<m(p))return C(p,a,b);
return Lucas(p,a/m(p),b/m(p))*Lucas(p,a%m(p),b%m(p))%m(p);
}
inline void exgcd(ll a,ll b)
{
if(!b){xx=1,yy=0;return;}
exgcd(b,a%b);
ll zz=xx;xx=yy;yy=zz-a/b*yy;
}
inline ll INV(ll a,ll b)
{
exgcd(a,b);
return (xx%b+b)%b;
}
inline ll solve(ll a,ll b)
{
rep(1,p,i)ans(i)=Lucas(i,a,b);//,cout<<ans(i)<<endl;
if(p==1)return ans(p);
//中国剩余定理.
ll ans=0;
rep(1,p,i)
{
ll M=mod/m(i);
ll ww=INV(M,m(i));
ans=(ans+M*ww%mod*ans(i))%mod;
}
return ans;
}
signed main()
{
freopen("1.in","r",stdin);
get(n);get(m);get(k);get(mod);
if(mod==1000003)m(p=1)=mod;
else
{
m(p=1)=3;m(p=2)=5;
m(p=3)=10007;m(p=4)=6793;
}
prepare();//cout<<solve(3,2)<<endl;
rep(1,k,i){ll get(x);s[i]=(jl){x,read()};}
sort(s+1,s+1+k,cmp);
s[++k]=(jl){n,m};
rep(1,k,i)
{
f[i]=solve(s[i].x+s[i].y,s[i].x);
rep(1,i-1,j)if(s[j].y<=s[i].y)
f[i]=(f[i]-f[j]*solve(s[i].x-s[j].x+s[i].y-s[j].y,s[i].x-s[j].x))%mod;
}
put((f[k]+mod)%mod);return 0;
}

又复习了一遍卢卡斯定理 和 中国剩余定理。/ll

bzoj 3782 上学路线 卢卡斯定理 容斥 中国剩余定理 dp的更多相关文章

  1. BZOJ 3782: 上学路线 [Lucas定理 DP]

    3782: 上学路线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 192  Solved: 75[Submit][Status][Discuss] ...

  2. BZOJ 3782: 上学路 Lucas+ExCRT+容斥+dp

    其实呢,扩展中国剩余定理还有一种理解方式:就是你有一坨东西,形如:$A[i]\equiv B[i](mod$ $P[i])$. 对于这个东西,你可以这么思考:如果最后能求出一个解,那么这个解的增量一定 ...

  3. HDU 5768Lucky7(多校第四场)容斥+中国剩余定理(扩展欧几里德求逆元的)+快速乘法

    地址:http://acm.hdu.edu.cn/showproblem.php?pid=5768 Lucky7 Time Limit: 2000/1000 MS (Java/Others)    M ...

  4. BZOJ 3782 上学路线 ——动态规划 Lucas定理 中国剩余定理

    我们枚举第一个经过的坏点,然后DP即可. 状态转移方程不是难点,难点在于组合数的处理. 将狼踩尽的博客中有很详细的证明过程,但是我只记住了结论 $n=a_1 * p^k+a_2*p^k-1...$ $ ...

  5. BZOJ 3782 上学路线

    首先这个题需要dp.dp[i]=C(x[i]+y[i],x[i])-Σdp[j]*C(x[i]-x[j]+y[i]-y[j],x[i]-x[j])(x[i]>=x[j],y[i]>=y[j ...

  6. HUST 1569(Burnside定理+容斥+数位dp+矩阵快速幂)

    传送门:Gift 题意:由n(n<=1e9)个珍珠构成的项链,珍珠包含幸运数字(有且仅由4或7组成),取区间[L,R]内的数字,相邻的数字不能相同,且旋转得到的相同的数列为一种,为最终能构成多少 ...

  7. 【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)

    [UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...

  8. [Hdu-5155] Harry And Magic Box[思维题+容斥,计数Dp]

    Online Judge:Hdu5155 Label:思维题+容斥,计数Dp 题面: 题目描述 给定一个大小为\(N*M\)的神奇盒子,里面每行每列都至少有一个钻石,问可行的排列方案数.由于答案较大, ...

  9. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

随机推荐

  1. c++随机生成树

    分析 当我们写完一道题,自认为它是正解,但是交上去却WA的时候,我们该怎么办呢 当我们已经想出了一道的暴力解法,又想出了一种比较优秀的解法,但不知道这种解法对错与否,我们该怎么办呢 答案显然是对拍 对 ...

  2. OutOfMemory相关问题(内存溢出异常OOM)

    OutOfMemory(内存溢出异常OOM) java.lang.OutOfMemoryError :Thrown when the Java Virtual Machine cannot alloc ...

  3. IA-32指令解析详解

    IA-32指令解析详解 0x00 前言 这段时间忙于考试,信息论和最优化,还有算法分析,有点让人头大.期间花了几天看SEH机制,能明白个大概,但是对于VC++对于SHE的包装似乎还是不是很明白,发现逆 ...

  4. Android屏幕适配技巧

    屏幕适配一直是困扰 Android 开发工程师的一大问题,但是随着近几年各种屏幕适配方案的诞生,以及谷歌各种适配控件的推出,屏幕适配也显得越来越容易,这节课我们就来总结一下关于屏幕适配的那些技巧. C ...

  5. git解决本地建立git仓库 连接远程git仓库出现拒绝合并问题

    (git解决本地建立git仓库 连接远程git仓库出现拒绝合并问题) 第一步在本地创建仓库 在本地创建一个文件夹,cd 进入创建的文件夹之后 git init 创建仓库 ,ls -a 能够看到 .gi ...

  6. Jenkins - 解决集成 jmeter+ant 发送邮件时报错:java.lang.ClassNotFoundException: javax.mail.internet.MimeMessage

    jenkins + jmeter +ant 发送邮件失败 问题原因 其实就是缺失 jar 包,导致某些类找不到了 解决方案 点击该网站,下载commons-email.jar包 点击该网站,下载act ...

  7. day11 本日作业+周末作业

    目录 一.今日作业 1.编写文件copy工具 2.编写登录程序,账号密码来自于文件 3.编写注册程序,账号密码来存入文件 二.周末综合作业: 1.编写用户登录接口 2.编写程序实现用户注册后,可以登录 ...

  8. requests接口自动化8-传递数据为xml形式的post请求:data

    传递数据为xml形式的post请求 请求体内容: <?xml version=“1.0” encoding = “UTF-8”?> <COM> <REQ name=&qu ...

  9. shell专题(四):Shell中的变量

    4.1 系统变量 1. 常用系统变量 $HOME.$PWD.$SHELL.$USER等 2.案例实操 (1)查看系统变量的值 [atguigu@hadoop101 datas]$ echo $HOME ...

  10. 数据可视化之powerBI基础(五)深入了解Power BI的跨页钻取交互

    https://zhuanlan.zhihu.com/p/79036123 在 PowerBI 中还有一种有趣的交互方式:跨页钻取.它可以通过点击某个数据点,钻取到另一个页面,进一步展示该数据点的详细 ...