# 处理异常值缺失值重复值数据差分
import pandas as pd
import numpy as np
import copy # 设置列对齐
pd.set_option("display.unicode.ambiguous_as_wide",True)
pd.set_option("display.unicode.east_asian_width",True) # 异常值 # 读取工号姓名时段交易额,使用默认索引
dataframe = pd.read_excel(r'C:\Users\lenovo\Desktop\总结\Python\超市营业额.xlsx') # 查看交易额低于 2000 的三条数据
# dataframe[dataframe.交易额 < 2000]
dataframe[dataframe.交易额 < 2000][:3]
'''
工号 姓名 日期 时段 交易额 柜台
1 1002 李四 20190301 14:00-21:00 1800 化妆品
2 1003 王五 20190301 9:00-14:00 800 食品
3 1004 赵六 20190301 14:00-21:00 1100 食品
'''
# 查看上浮了 50% 之后依旧低于 1500 的交易额,查看 4 条数据
dataframe.loc[dataframe.交易额 < 1500,'交易额'] = dataframe[dataframe.交易额 < 1500]['交易额'].map(lambda num:num*1.5)
dataframe[dataframe.交易额 < 1500][:4]
'''
工号 姓名 日期 时段 交易额 柜台
2 1003 王五 20190301 9:00-14:00 1200.0 食品
4 1005 周七 20190301 9:00-14:00 900.0 日用品
5 1006 钱八 20190301 14:00-21:00 1050.0 日用品
6 1006 钱八 20190301 9:00-14:00 1275.0 蔬菜水果
'''
# 查看交易额大于 2500 的数据
dataframe[dataframe.交易额 > 2500]
'''
Empty DataFrame
Columns: [工号, 姓名, 日期, 时段, 交易额, 柜台]
Index: []
'''
# 查看交易额低于 900 或 高于 1800 的数据
dataframe[(dataframe.交易额 < 900)|(dataframe.交易额 > 1800)]
'''
工号 姓名 日期 时段 交易额 柜台
0 1001 张三 20190301 9:00-14:00 2000.0 化妆品
8 1001 张三 20190302 9:00-14:00 1950.0 化妆品
12 1005 周七 20190302 9:00-14:00 870.0 日用品
16 1001 张三 20190303 9:00-14:00 1950.0 化妆品
'''
# 将所有低于 200 的交易额都替换成 200
dataframe.loc[dataframe.交易额 < 200,'交易额'] = 200 # 查看低于 1500 的交易额个数
dataframe.loc[dataframe.交易额 < 1500,'交易额'].count()
# # 将大于 3000 元的都替换为 3000 元
dataframe.loc[dataframe.交易额 > 3000,'交易额'] = 3000 # 缺失值 # 查看有多少行数据
len(dataframe)
# # 丢弃缺失值之后的行数
len(dataframe.dropna())
# # 包含缺失值的行
dataframe[dataframe['交易额'].isnull()]
'''
Empty DataFrame
Columns: [工号, 姓名, 日期, 时段, 交易额, 柜台]
Index: []
'''
# 使用固定值替换缺失值
# dff = copy.deepcopy(dataframe)
# dff.loc[dff.交易额.isnull(),'交易额'] = 999
# 将缺失值设定为 999
# dff.iloc[[1,4,17],:] # 使用交易额的均值替换缺失值
# dff = copy.deepcopy(dataframe)
# for i in dff[dff.交易额.isnull()].index:
# dff.loc[i,'交易额'] = round(dff.loc[dff.姓名 == dff.loc[i,'姓名'],'交易额'].mean())
# dff.iloc[[1,4,17],:] # 使用整体均值的 80% 填充缺失值
# dataframe.fillna({'交易额':round(dataframe['交易额'].mean() * 0.8)},inplace = True)
# dataframe.iloc[[1,4,16],:] # 重复值
dataframe[dataframe.duplicated()]
'''
Empty DataFrame
Columns: [工号, 姓名, 日期, 时段, 交易额, 柜台]
Index: []
'''
# dff = dataframe[['工号','姓名','日期','交易额']]
# dff = dff[dff.duplicated()]
# for row in dff.values:
# df[(df.工号 == row[0]) & (df.日期 == row[2]) &(df.交易额 == row[3])] # 丢弃重复行
dataframe = dataframe.drop_duplicates() # 查看是否有录入错误的工号和姓名
dff = dataframe[['工号','姓名']]
dff.drop_duplicates()
'''
工号 姓名
0 1001 张三
1 1002 李四
2 1003 王五
3 1004 赵六
4 1005 周七
5 1006 钱八
''' # 数据差分
# 查看员工业绩波动情况(每一天和昨天的数据作比较)
dff = dataframe.groupby(by = '日期').sum()['交易额'].diff()
'''
日期
20190301 NaN
20190302 1765.0
20190303 -9690.0
Name: 交易额, dtype: float64
'''
dff.map(lambda num:'%.2f'%(num))[:5]
'''
日期
20190301 nan
20190302 1765.00
20190303 -9690.00
Name: 交易额, dtype: object
'''
# 数据差分
# 查看张三的波动情况
dataframe[dataframe.姓名 == '张三'].groupby(by = '日期').sum()['交易额'].diff()[:5]
'''
日期
20190301 NaN
20190302 850.0
20190303 -900.0
Name: 交易额, dtype: float64
'''

2020-05-07

pandas_处理异常值缺失值重复值数据差分的更多相关文章

  1. mysql 用sql 语句去掉某个字段重复值数据的方法

    示例代码如下: create table tmp as select min(主键) as col1 from 去重表名 GROUP BY 去重字段; delete from 去重表名 where 主 ...

  2. [Python] Pandas 对数据进行查找、替换、筛选、排序、重复值和缺失值处理

    目录 1. 数据文件 2. 读数据 3. 查找数据 4. 替换数据 4.1 一对一替换 4.2 多对一替换 4.3 多对多替换 5. 插入数据 6. 删除数据 6.1 删除列 6.2 删除行 7. 处 ...

  3. Python数据分析中对重复值、缺失值、空格的处理

    对重复值的处理 把数据结构中,行相同的数据只保留一行 函数语法: drop_duplicates() from pandas import read_csv df = read_csv(文件位置) n ...

  4. 试验指标|试验单位|均方|随机模型|固定模型|字母标记法|LSR|q检验|LSD|重复值|弥补缺失数据|可加性|平方根转换|对数转换|反正弦转化

    第五章 方差分析 试验指标是什么? 就是统计的测量值,eg:身高体重 试验单位( experimental unit )是什么? 实验载体,比如一只小白鼠 均方是什么? 就是方差 随机模型的τ有何特点 ...

  5. Mysql查询某字段值重复的数据

    查询user表中,user_name字段值重复的数据及重复次数 select user_name,count(*) as count from user group by user_name havi ...

  6. Mysql 查询表中某字段的重复值,删除重复值保留id最小的数据

    1 查询重复值 ); 2 删除重复值 -- 创建临时表 ) ); -- 把重复数据放进临时表 INSERT Hb_Student_a SELECT id,studentNumber FROM Hb_S ...

  7. innodb 自增列重复值问题

    1 innodb 自增列出现重复值的问题 先从问题入手,重现下这个bug use test; drop table t1; create table t1(id int auto_increment, ...

  8. MySQL 处理插入过程中的主键唯一键重复值办法

    200 ? "200px" : this.width)!important;} --> 介绍 本篇文章主要介绍在插入数据到表中遇到键重复避免插入重复值的处理方法,主要涉及到I ...

  9. 使用aggregate在MongoDB中查找重复的数据记录

    我们知道,MongoDB属于文档型数据库,其存储的文档类型都是JSON对象.正是由于这一特性,我们在Node.js中会经常使用MongoDB进行数据的存取.但由于Node.js是异步执行的,这就导致我 ...

随机推荐

  1. 乐观锁&CAS问题

    悲观者与乐观者的做事方式完全不一样,悲观者的人生观是一件事情我必须要百分之百完全控制才会去做,否则就认为这件事情一定会出问题:而乐观者的人生观则相反,凡事不管最终结果如何,他都会先尝试去做,大不了最后 ...

  2. 一行一行源码分析清楚AbstractQueuedSynchronizer

    ​“365篇原创计划”第二十四篇. 今天呢!灯塔君跟大家讲: 一行一行源码分析清楚AbstractQueuedSynchronizer 在分析 Java 并发包 java.util.concurren ...

  3. CSS中link和@import的使用区别

    我们都知道在html中引入外部的CSS 有2种方式,link标签和@import,他们又什么区别呢? 1.从属关系区别@import是 CSS 提供的语法规则,只有导入样式表的作用:link是HTML ...

  4. 「杂烩」精灵魔法(P1908逆序对弱化版)

    「杂烩」精灵魔法(P1908逆序对弱化版) 题面: 题目描述 \(Tristan\)解决了英灵殿的守卫安排后,便到达了静谧的精灵领地--\(Alfheim\) .由于$ Midgard$ 处在$ Al ...

  5. PE文件结构详解(三)

    0x01 前言 上一篇讲到了数据目录表的结构和怎找到到数据目录表(DataDirectory[16]),这篇我们我来讲讲数据目录表后面的另一个结构——区块表. 0x01 区块 区块就是PE载入器将PE ...

  6. python数据处理(一)之供机器读取的数据 csv,json,xml

    代码与资料 https://github.com/jackiekazil/data-wrangling 1 csv 1.1导入csv数据 1.2将代码保存到文件中并在命令行中运行 2.json 2 导 ...

  7. Oracle Database Tools

    The following are some products, tools, and utilities you can use to achieve your goals as a databas ...

  8. Ethical Hacking - NETWORK PENETRATION TESTING(6)

    Creating a fake access point (honeypot) Fake access points can be handy in many scenarios, one examp ...

  9. dbca 建库报错 ORA-00600 解决办法

    [oracle@tim1 ~]$ dbca## An unexpected error has been detected by HotSpot Virtual Machine:## SIGSEGV ...

  10. OA系统从选型到实施完整攻略

    本文结合一线IT人士分享OA实施经验,单纯地讲述OA的选型与实施,为相关经验较少的IT人士提供真正的帮助. 一.如何选择OA系统 说起OA选型,稳定性.易用性.灵活性.成本和服务少不了.但是,只了解这 ...