欧拉函数

定义

对于正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目,记作φ(n).

算法思路

既然求解每个数的欧拉函数,都需要知道他的质因子,而不需要个数

因此,我们只需求出他的质因子,然后根据公式:N*(p1-1)/p1*(p2-1)/p2......即可

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n; int main()
{
ll i,j;
cin>>n;
for(i=0;i<n;i++)
{
ll x;
cin>>x;
ll ans=x;
for(j=2;j<=x/j;j++)
{
if(x%j==0)
{
ans=ans*(j-1)/j;
while(x%j==0)
{
x/=j;
}
}
}
if(x!=1)
ans=ans*(x-1)/x;
cout<<ans<<endl;
}
return 0;
}

筛法求欧拉函数

问题

给定一个正整数n,求1~n中每个数的欧拉函数之和。

算法思路

使用线性筛的方法,来求每个数的欧拉函数

#include<bits/stdc++.h>
using namespace std;
const int N=1e6+10;
int n,cnt;
bool st[N];
int primes[N];
int phi[N]; void get_eulers()
{
int i,j;
phi[1]=1;
for(i=2;i<=n;i++)
{
if(!st[i])
{
primes[cnt++]=i;
phi[i]=i-1;
for(j=0;primes[j]<=n/i;j++)
{
st[primes[j]*i]=true;
if(i%primes[j]==0)
phi[primes[j]*i]=primes[j]*phi[i];
else
phi[primes[j]*i]=(primes[j]-1)*phi[i];
}
}
}
int ans=0;
for(i=1;i<=n;i++)
ans+=phi[i];
cout<<ans<<endl;
} int main()
{
int i,j;
cin>>n; get_eulers(); return 0;
}

快速幂

#include<bits/stdc++.h>
using namespace std;
typedef long long ll; void suppow(ll a,ll b,ll p)
{
ll ans=1;
while(b)
{
if(b&1)
ans=(ans*a)%p;
a=(a*a)%p;
b>>=1;
}
cout<<ans%p<<endl;
} int main()
{
ll n,a,b,p;
cin>>n;
while(n--)
{
cin>>a>>b>>p;
suppow(a,b,p);
} return 0;
}

快速幂求逆元

前提

代码

快速幂求解:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e5+10; ll supow(ll a,ll b,ll p)
{
ll ans=1;
while(b)
{
if(b&1)
ans=ans*a%p;
a=a*a%p;
b>>=1;
}
return ans;
} int main()
{
ll a,p,n;
cin>>n;
while(n--)
{
cin>>a>>p;
if(a%p!=0)
{
cout<<supow(a,p-2,p)<<endl;
}
else
puts("impossible");
}
return 0;
}

扩展欧几里得求逆元

#include <iostream>
using namespace std;
typedef long long LL;
int n; int exgcd(int a, int b, int &x, int &y)
{
if (!b) {
x = 1, y = 0;
return a;
}
int d = exgcd(b, a % b, y, x);
y -= a / b * x;
return d;
} int main()
{
cin >> n;
while (n --)
{
int a, p, x, y;
// if (a < p) swap(a, p);
cin >> a >> p;
int d = exgcd(a, p, x, y);
if (d == 1) cout << ((LL)x + p) % p << endl;//保证x是正数
else puts("impossible"); }
return 0;
}

数学知识-欧拉函数&快速幂的更多相关文章

  1. hdu 3307 Description has only two Sentences (欧拉函数+快速幂)

    Description has only two SentencesTime Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...

  2. XMU 1615 刘备闯三国之三顾茅庐(三) 【欧拉函数+快速幂+欧拉定理】

    1615: 刘备闯三国之三顾茅庐(三) Time Limit: 1000 MS  Memory Limit: 128 MBSubmit: 45  Solved: 8[Submit][Status][W ...

  3. 牛客训练:小a与黄金街道(欧拉函数+快速幂)

    题目链接:传送门 思路:欧拉函数的性质:前n个数的欧拉函数之和为φ(n)*n/2,由此求出结果. 参考文章:传送门 #include<iostream> #include<cmath ...

  4. Exponial (欧拉定理+指数循环定理+欧拉函数+快速幂)

    题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=2021 Description Everybody loves big numbers ...

  5. 小a与黄金街道(欧拉函数+快速幂)

    链接:https://ac.nowcoder.com/acm/contest/317/D 来源:牛客网 题目描述 小a和小b来到了一条布满了黄金的街道上.它们想要带几块黄金回去,然而这里的城管担心他们 ...

  6. 【BZOJ 1409】 Password 数论(扩展欧拉+矩阵快速幂+快速幂)

    读了一下题就会很愉快的发现,这个数列是关于p的幂次的斐波那契数列,很愉快,然后就很愉快的发现可以矩阵快速幂一波,然后再一看数据范围就......然后由于上帝与集合对我的正确启示,我就发现这个东西可以用 ...

  7. CF思维联系– CodeForces -CodeForces - 992C Nastya and a Wardrobe(欧拉降幂+快速幂)

    Nastya received a gift on New Year - a magic wardrobe. It is magic because in the end of each month ...

  8. UVaLive 7362 Farey (数学,欧拉函数)

    题意:给定一个数 n,问你0<= a <=n, 0 <= b <= n,有多少个不同的最简分数. 析:这是一个欧拉函数题,由于当时背不过模板,又不让看书,我就暴力了一下,竟然A ...

  9. 数学之欧拉函数 &几道poj欧拉题

    欧拉函数总结+证明 欧拉函数总结2 POJ 1284 原根 #include<iostream> #include<cstdio> #include<cstring> ...

随机推荐

  1. web测试误区:浏览器后退键退出系统会话失效

    通过最近测试的项目,认识到实际:浏览器后退键退出系统,会话仍旧有效.打破了之前认为浏览器后退键就会退出系统登录的认知. 一,了解Cookie和Session的作用,具体来说cookie机制采用的是在客 ...

  2. Xctf攻防世界—crypto—Normal_RSA

    下载压缩包后打开,看到两个文件flag.enc和pubkey.pem,根据文件名我们知道应该是密文及公钥 这里我们使用一款工具进行解密 工具链接:https://github.com/3summer/ ...

  3. three.js cannon.js物理引擎之约束

    今天郭先生继续说cannon.js,主演内容就是点对点约束和2D坐标转3D坐标.仍然以一个案例为例,场景由一个地面.若干网格组成的约束体和一些拥有初速度的球体组成,如下图.线案例请点击博客原文. 下面 ...

  4. Kioptix Level 1

    1. 简介 Vulnhub是一个提供各种漏洞环境的靶场平台. 个人学习目的:1,方便学习更多类型漏洞.2,为OSCP做打基础. 下载链接 https://www.vulnhub.com/entry/k ...

  5. postman接口测试之复制多个接口或collections到某个子文件夹或collections下

    一.痛点 1.postman只支持复制一个请求,或者一个子文件夹,但是不支持复制多个请求,或者整个collections到某个子文件夹或者某个collections下. 2.网上查了好一会儿,没有一个 ...

  6. Android 中使用 config.gradle

    各位同学大家好,当然了如果不是同学,那么大家也同好.哈哈. 大家知道config.gradle 是什么吗?我也不知道.开个完笑,其实config.gradle 就是我们为了统一gradle 中的各种配 ...

  7. [Usaco2016 Dec]Counting Haybales

    原题链接https://www.lydsy.com/JudgeOnline/problem.php?id=4747 先将原数组排序,然后二分查找即可.时间复杂度\(O((N+Q)logN)\). #i ...

  8. Docker 拉取镜像速度太慢

    Docker Hub 是我们分发和获取 Docker 镜像的中心,但由于服务器位于海外,经常会出现拉取/上传镜像时速度太慢或无法访问的情况.再加上运营方不断对 Docker Hub 的免费使用进行限制 ...

  9. Spring依赖注入的方式、类型、Bean的作用域、自动注入、在Spring配置文件中引入属性文件

    1.Spring依赖注入的方式 通过set方法完成依赖注入 通过构造方法完成依赖注入 2.依赖注入的类型 基本数据类型和字符串 使用value属性 如果是指向另一个对象的引入 使用ref属性 User ...

  10. 关于springboot2.X使用外部tomcat服务器进行部署的操作详细步骤

    1.修改pom.xml文件(4个地方) ①<packaging>war</packaging>将其中的jar该为war ②<dependency> <grou ...