Problem Description
Alice gets N strings. Now she has Q questions to ask you. For each question, she wanna know how many different prefix strings between Lth and Rth strings. It's so easy right? So solve it!
 

Input
The input contains multiple test cases.

For each test case, the first line contains one integer N(1≤N≤100000).
Then next N lines contain N strings and the total length of N strings is between 1 and 100000. The next line contains one integer Q(1≤Q≤100000).
We define a specail integer Z=0. For each query, you get two integer L, R(0=<L,R<N). Then the query interval [L,R] is [min((Z+L)%N,(Z+R)%N)+1,max((Z+L)%N,(Z+R)%N)+1]. And Z change to the answer of this query.
 

Output
For each question, output the answer.
 

Sample Input

3
abc
aba
baa
3
0 2
0 1
1 1
 

Sample Output

7
6

3

题意:给你n个字符串,问你第L个字符串到R个字符串中不同前缀的个数,且强制在线。

思路:这题和之前d-query这题很相似,那题问的是区间内不同数的种类。这题问的是不同前缀个数,所以我们可以先把所有的字符串插入到Trie树中,然后每次插入维护每一个节点最后被遍历到的时刻,然后用主席树维护下就行了。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define Key_value ch[ch[root][1]][0]
#define maxn 100050
#define maxnode 1000050
char s[maxn];
int n;
int ch[maxnode][28];
int val[maxnode];
int sz; #define M 1000500*30
int lson[M],rson[M],c[M],T[M];
int th; int build(int l,int r)
{
int i,j,newroot=++th,mid;
c[newroot]=0;
if(l!=r){
mid=(l+r)/2;
lson[newroot]=build(l,mid);
rson[newroot]=build(mid+1,r);
}
return newroot;
} int update(int root,int zhi,int value)
{
int i,j,newroot=++th;
int tmp=newroot;
int l=1,r=n,mid;
c[newroot]=c[root]+value;
while(l<r){
mid=(l+r)/2;
if(zhi<=mid){
r=mid;
lson[newroot]=++th;rson[newroot]=rson[root];
newroot=lson[newroot];root=lson[root];
}
else{
l=mid+1;
lson[newroot]=lson[root];rson[newroot]=++th;
newroot=rson[newroot];root=rson[root]; }
c[newroot]=c[root]+value;
}
return tmp;
} int question(int root,int pos)
{
int i,j;
int sum=0;
int l=1,r=n,mid;
while(l<r){
mid=(l+r)/2;
if(pos<=mid){
r=mid;
sum+=c[rson[root] ];
root=lson[root];
}
else{
l=mid+1;
root=rson[root];
} }
sum+=c[root];
return sum;
} void init(){
sz=0;memset(ch[0],0,sizeof(ch[0]));
memset(val,0,sizeof(val));
}
int idx(char c){
return c-'a';
} void charu(char *s,int tm){
int u=0,len=strlen(s),i,c;
T[tm]=T[tm-1];
for(i=0;i<len;i++){
c=idx(s[i]);
if(!ch[u][c]){
sz++;
memset(ch[sz],0,sizeof(ch[sz]));
val[sz]=tm;
T[tm]=update(T[tm],tm,1);
ch[u][c]=sz;
u=ch[u][c];
}
else if(ch[u][c]){
T[tm]=update(T[tm],val[ch[u][c] ],-1);
val[ch[u][c] ]=tm;
T[tm]=update(T[tm],tm,1);
u=ch[u][c];
}
}
} int main()
{
int m,i,j;
while(scanf("%d",&n)!=EOF)
{
init();
th=0;
T[0]=build(1,n);
for(i=1;i<=n;i++){
scanf("%s",s);
charu(s,i);
}
scanf("%d",&m);
int l,r,z=0,t1,t2;
for(i=1;i<=m;i++){
scanf("%d%d",&l,&r);
l=(z+l)%n+1;
r=(z+r)%n+1;
if(l>r)swap(l,r);
z=question(T[r],l);
printf("%d\n",z);
} }
return 0;
}

hdu5790 Prefix(Trie树+主席树)的更多相关文章

  1. 线段树简单入门 (含普通线段树, zkw线段树, 主席树)

    线段树简单入门 递归版线段树 线段树的定义 线段树, 顾名思义, 就是每个节点表示一个区间. 线段树通常维护一些区间的值, 例如区间和. 比如, 上图 \([2, 5]\) 区间的和, 为以下区间的和 ...

  2. HDU5790 Prefix 字典树+主席树

    分析:这个题和spoj的d_query是一个题,那个是求一段区间里有多少个不同的数字,这里是统计有多少个不同的前缀 用字典树进行判重,(和查询不同的数字一样)对于每个不同的前缀,只保留它最后一次出现的 ...

  3. 【BZOJ3439】Kpm的MC密码 trie树+主席树

    Description 背景 想Kpm当年为了防止别人随便进入他的MC,给他的PC设了各种奇怪的密码和验证问题(不要问我他是怎么设的...),于是乎,他现在理所当然地忘记了密码,只能来解答那些神奇的身 ...

  4. HDU 5790 Prefix(Hash + 主席树)

    题目链接  Prefix 题意  给定一个字符串序列,求第$l$个字符串到第$r$个字符串之间有多少个不同的前缀 强制在线 考虑$Hash$ 首先把所有前缀都$hash$出来,按顺序组成一个长度不超过 ...

  5. 学习笔记--函数式线段树(主席树)(动态维护第K极值(树状数组套主席树))

    函数式线段树..资瓷 区间第K极值查询 似乎不过似乎划分树的效率更优于它,但是如果主席树套树状数组后,可以处理动态的第K极值.即资瓷插入删除,划分树则不同- 那么原理也比较易懂: 建造一棵线段树(权值 ...

  6. bzoj 3545&&3551: [ONTAK2010]Peaks &&加强版 平衡树&&并查集合并树&&主席树

    3545: [ONTAK2010]Peaks Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 635  Solved: 177[Submit][Stat ...

  7. BZOJ 4539: [Hnoi2016]树 [主席树 lca]

    4539: [Hnoi2016]树 题意:不想写.复制模板树的子树,查询两点间距离. *** 终于有一道会做的题了...... 画一画发现可以把每次复制的子树看成一个大点来建一棵树,两点的lca一定在 ...

  8. 线段树(单标记+离散化+扫描线+双标记)+zkw线段树+权值线段树+主席树及一些例题

    “队列进出图上的方向 线段树区间修改求出总量 可持久留下的迹象 我们 俯身欣赏” ----<膜你抄>     线段树很早就会写了,但一直没有总结,所以偶尔重写又会懵逼,所以还是要总结一下. ...

  9. UOJ#218. 【UNR #1】火车管理 线段树 主席树

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ218.html 题解 如果我们可以知道每次弹出栈之后新的栈顶是什么,那么我们就可以在一棵区间覆盖.区间求和 ...

随机推荐

  1. Redis的sentinel(哨兵)部署

    1.准备文件 1.解压redis-4.0.1.tar.gz的redis文件 2.新建目录 redis-cluster以及子目录 master-6379 slave-7000 slave-7001 3. ...

  2. springboot源码解析-管中窥豹系列之aware(六)

    一.前言 Springboot源码解析是一件大工程,逐行逐句的去研究代码,会很枯燥,也不容易坚持下去. 我们不追求大而全,而是试着每次去研究一个小知识点,最终聚沙成塔,这就是我们的springboot ...

  3. Flutter 基础组件:进度指示器

    前言 Material 组件库中提供了两种进度指示器:LinearProgressIndicator和CircularProgressIndicator,它们都可以同时用于精确的进度指示和模糊的进度指 ...

  4. 十七:SQL注入之二次加解密,DNS注入

    加解密,二次,DNSlog注入 注入原理,演示案例,实际应用. less-21关,base64进行解密 encode加密decode解密 cookie处注入 判断加密算法,然后进行注入 less-24 ...

  5. ps 2020 下载

    一款极具实用价值的作图软件--ps,由于正版价格昂贵,所以这里分享破解版的资源.b话少说,下面是下载链接和安装步骤: 下载链接: 百度网盘链接:https://pan.baidu.com/s/1XPf ...

  6. ios获取缓存文件的大小并清除缓存

    移动应用在处理网络资源时,一般都会做离线缓存处理,其中以图片缓存最为典型,其中很流行的离线缓存框架为SDWebImage. 但是,离线缓存会占用手机存储空间,所以缓存清理功能基本成为资讯.购物.阅读类 ...

  7. CF625E Frog Fights

    有\(n\)只青蛙在一个长度为\(m\)的环上打架:每只青蛙有一个初始位置\(p_i\),和一个跳跃数值\(a_i\).从\(1\)号青蛙开始按序号循环行动,每次若第\(i\)只青蛙行动,则它会向前跳 ...

  8. 阿里云RDS物理备份恢复到本地

    一:业务场景 验证阿里云备份文件可用性 二:恢复到本地过程中遇到的问题 1.修改密码报错 2.自定义函数不可用 三:恢复步骤 1.xtrabackup安装使用 请参考:https://www.cnbl ...

  9. python的零碎知识

    1.Python代码操作git 安装 pip3 install gitpython 操作git import os from git.repo import Repo # gitpython def ...

  10. Rancher On K3s 高可用架构部署

    Rancher 推荐部署架构 k3s 模式 RKE 和 k8s 模式 备注: 我对 RKE 的理解就是 Ansible + kubeadm 的打包,首先 rke 需要到每一个节点都可以免密 ssh , ...