HDU4467 Graph【轻重点维护】
HDU4467 Graph
题意:
给出一张染色图,\(n\)个点每个点是黑色或者白色,\(m\)条带权边,\(q\)次操作,有两种操作:
- 改变一个点的颜色
- 问所有边中两个端点的颜色为给定情况的边权和是多少
题解:
首先因为有重边,所以先把重边合并一下
然后按每个点的度数是否大于\(\sqrt{边总数}\),把点分轻点和重点,同时记录所有三种询问情况的答案
在图中,重点我们保存其所有连的重点的边,轻点我们保存其所有连出去的边
显然重点不会超过\(sqrt{边总数}\)个,且重点和轻点所连出去的边不会超过\(sqrt{边总数}\)条
每个重点要记录它连出去的到达黑点的边的总权值和到达白点的边的总权值
对于每次修改操作,分轻重点分别维护
- 如果修改的是轻点,那么直接暴力修改答案
- 如果是重点,利用保存的连出去的边到达的两种颜色的权值和更新答案
同时每次修改一个点,需要更新其连的重点的两个总权值数据
对于查询操作直接输出记录的答案即可
查询复杂度\(O(1)\)
修改复杂度\(O(sqrt{边总数})\)
总时间复杂度为\(O(q sqrt{边总数})\)
只给了\(32MB\)的空间,很容易爆内存
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 1e5+7;
typedef long long int LL;
int n,m,col[MAXN],deg[MAXN];
LL vtot[3],val[2][MAXN];
bool heavy[MAXN];
vector<pair<int,LL>> G[MAXN];
char op[10];
void solvequery(){
scanf("%s",op);
if(op[0]=='A'){
int x, y;
scanf("%d %d",&x,&y);
printf("%I64d\n",vtot[x+y]);
}
else{
int x; scanf("%d",&x);
if(heavy[x]){
vtot[1+col[x]] -= val[1][x]; vtot[0+col[x]] -= val[0][x];
vtot[1+(col[x]^1)] += val[1][x]; vtot[0+(col[x]^1)] += val[0][x];
}
else{
for(auto e : G[x]){
vtot[col[x]+col[e.first]] -= e.second;
vtot[(col[x]^1)+col[e.first]] += e.second;
}
}
for(auto e : G[x]){
if(!heavy[e.first]) continue;
val[col[x]][e.first] -= e.second;
val[col[x]^1][e.first] += e.second;
}
col[x] ^= 1;
}
}
pair<pair<int,int>,LL> vec[MAXN];
void solve(int kase){
for(int i = 1; i <= n; i++){
scanf("%d",&col[i]);
G[i].clear();
val[0][i] = val[1][i] = deg[i] = 0;
}
vtot[0] = vtot[1] = vtot[2] = 0;
int tot = 0;
for(int i = 1; i <= m; i++){
int u, v, w; scanf("%d %d %d",&u,&v,&w);
if(u>v) u ^= v ^= u ^= v;
vec[++tot] = make_pair(make_pair(u,v),w);
}
sort(vec+1,vec+1+tot);
int nt = 1;
for(int i = 2; i <= tot; i++){
if(vec[i].first==vec[nt].first) vec[nt].second += vec[i].second;
else vec[++nt] = vec[i];
}
for(int i = 1; i <= nt; i++) deg[vec[i].first.first]++, deg[vec[i].first.second]++;
int up = sqrt(nt);
for(int i = 1; i <= n; i++) heavy[i] = deg[i]>=up;
for(int i = 1; i <= nt; i++){
auto &e = vec[i];
int u = e.first.first, v = e.first.second;
LL w = e.second;
if(heavy[u]){
if(heavy[v]) G[u].push_back(make_pair(v,w));
val[col[v]][u] += w;
}
else G[u].push_back(make_pair(v,w));
if(heavy[v]){
if(heavy[u]) G[v].push_back(make_pair(u,w));
val[col[u]][v] += w;
}
else G[v].push_back(make_pair(u,w));
vtot[col[u]+col[v]] += w;
}
int q; scanf("%d",&q);
printf("Case %d:\n",kase);
while(q--) solvequery();
}
int main(){
int kase = 0;
while(scanf("%d %d",&n,&m)!=EOF) solve(++kase);
return 0;
}
HDU4467 Graph【轻重点维护】的更多相关文章
- HDU4467:Graph(点的度数分块)
传送门 题意 给出一张n个点m条边的无向图,点的颜色为0/1,每次有两种操作: 1.Asksum x y,查询两点颜色为x和y的边的权值之和 2.Change x,将x颜色取反 分析 最直接的做法是每 ...
- hdu4467 Graph
Graph Problem Description P. T. Tigris is a student currently studying graph theory. One day, when h ...
- Nebula Graph 在企查查的应用
本文首发于 Nebula Graph Community 公众号 背景 企查查是企查查科技有限公司旗下的一款企业信用查询工具,旨在为用户提供快速查询企业工商信息.法院判决信息.关联企业信息.法律诉讼. ...
- 2013 ACM/ICPC Asia Regional Online —— Warmup2
HDU 4716 A Computer Graphics Problem 水题.略 HDU 4717 The Moving Points 题目:给出n个点的起始位置以及速度矢量,问任意一个时刻使得最远 ...
- scala知识点(一)
1.drop,dropRight,dropWhile drop: drop(n: Int): List[A] 丢弃前n个元素,返回剩下的元素 dropRight: dropRight(n: Int): ...
- GraphX 图数据建模和存储
背景 简单分析一下GraphX是怎么为图数据建模和存储的. 入口 能够看GraphLoader的函数. def edgeListFile( sc: SparkContext, path: String ...
- [Docker01] The Docker Road
The Docker Road Docker是什么? Docker是docker容器为资源分隔和调度的基本单位,封装整个软件运行时环境,为开发者和系统管理员设计的,用于构建,发布和运行分布式应用的平台 ...
- [源码解析] Pytorch 如何实现后向传播 (2)---- 引擎静态结构
[源码解析] Pytorch 如何实现后向传播 (2)---- 引擎静态结构 目录 [源码解析] Pytorch 如何实现后向传播 (2)---- 引擎静态结构 0x00 摘要 0x01 Engine ...
- 转债---Pregel: A System for Large-Scale Graph Processing(译)
转载:http://duanple.blog.163.com/blog/static/70971767201281610126277/ 作者:Grzegorz Malewicz, Matthew ...
随机推荐
- Harbor镜像删除回收?只看这篇
最近,公司的技术平台,运维的破事儿颇多.Jira无法访问,ES堆内存不足,Jenkins频繁不工作..等等等,让我这个刚入门的小兵抓心脑肝,夜不能寐,关键时刻方恨经验薄弱呀!!一波未平,一波又起,这不 ...
- /usr/bin/ld: cannot find -lc
yum install glibc-static [root@test chkrootkit-0.50]# make sensecc -static -o strings-static strings ...
- kubernets之机理概览
一 了解kubernets的运行机理 1.1 了解架构 众所周知,kubernets的组成由2个部分组成 kubernets 平面 node节点 (工作节点) 控制平面的组成 etcd 分布 ...
- 【老孟Flutter】源码分析系列之InheritedWidget
老孟导读:这是2021年源码系列的第一篇文章,其实源码系列的文章不是特别受欢迎,一个原因是原理性的知识非常枯燥,我自己看源码的时候特别有感触,二是想把源码分析讲的通俗易懂非常困难,自己明白 和 让别人 ...
- CTFshow-萌新赛web_假赛生
打开靶机 网页源码提示代码如下 根据提示,存在 login.php register.php,根据要求需要用户名为admin,尝试注册后发现已存在,接着尝试注册用户名admin+空格,接着用admin ...
- thinkpad8平板安装win10系统
ThinkPad8 因为是平板电脑,只有一个micro USB接口,常规安装没法使用鼠标或键盘进行输入,所以难倒很多人. 幸好前段时间买了根otg线和3.0usb hub,安装方法记录如下: 准备:U ...
- Redis 实战 —— 01. Redis 数据结构简介
一些数据库和缓存服务器的特性和功能 P4 名称 类型 数据存储选项 查询类型 附加功能 Redis 使用内存存储(in-memory)的非关系数据库 字符串.列表.哈希表.集合.有序集合 每种数据类型 ...
- AVA编程中button按钮,actionlistener和mouseClicked区别
在java的编程中,对于按钮button 有两个事件: 1.actionPerformed 2.mouseClicked 区别: actionPerformed:一般事件,仅侦听鼠标左键的单击事件,右 ...
- 浅谈java中线程和操作系统线程
在聊线程之前,我们先了解一下操作系统线程的发展历程,在最初的时候,操作系统没有进程线程一说,执行程序都是串行方式执行,就像一个队列一样,先执行完排在前面的,再去执行后面的程序,这样的话很多程序的响应就 ...
- Swagger2配置与使用
Swagger2配置与使用 Swagger2介绍 前后端分离开发模式中,api文档是最好的沟通方式. Swagger 是一个规范和完整的框架,用于生成.描述.调用和可视化 RESTful 风格的 We ...