本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/nn_layers_convolution.py

这篇文章主要介绍了 PyTorch 中常用的卷积层,包括 3 个部分。

1D/2D/3D 卷积

卷积有一维卷积、二维卷积、三维卷积。一般情况下,卷积核在几个维度上滑动,就是几维卷积。比如在图片上的卷积就是二维卷积。

一维卷积

二维卷积

三维卷积

二维卷积:nn.Conv2d()

nn.Conv2d(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1,
bias=True, padding_mode='zeros')

这个函数的功能是对多个二维信号进行二维卷积,主要参数如下:

  • in_channels:输入通道数
  • out_channels:输出通道数,等价于卷积核个数
  • kernel_size:卷积核尺寸
  • stride:步长
  • padding:填充宽度,主要是为了调整输出的特征图大小,一般把 padding 设置合适的值后,保持输入和输出的图像尺寸不变。
  • dilation:空洞卷积大小,默认为 1,这时是标准卷积,常用于图像分割任务中,主要是为了提升感受野
  • groups:分组卷积设置,主要是为了模型的轻量化,如在 ShuffleNet、MobileNet、SqueezeNet 中用到
  • bias:偏置

卷积尺寸计算

简化版卷积尺寸计算

这里不考虑空洞卷积,假设输入图片大小为 $ I \times I$,卷积核大小为 $k \times k$,stride 为 $s$,padding 的像素数为 $p$,图片经过卷积之后的尺寸 $ O $ 如下:

$O = \displaystyle\frac{I -k + 2 \times p}{s} +1$

下面例子的输入图片大小为 $5 \times 5$,卷积大小为 $3 \times 3$,stride 为 1,padding 为 0,所以输出图片大小为 $\displaystyle\frac{5 -3 + 2 \times 0}{1} +1 = 3$。

完整版卷积尺寸计算

完整版卷积尺寸计算考虑了空洞卷积,假设输入图片大小为 $ I \times I$,卷积核大小为 $k \times k$,stride 为 $s$,padding 的像素数为 $p$,dilation 为 $d$,图片经过卷积之后的尺寸 $ O $ 如下:。

$O = \displaystyle\frac{I - d \times (k-1) + 2 \times p -1}{s} +1$

卷积网络示例

这里使用 input*channel 为 3,output_channel 为 1 ,卷积核大小为 $3 \times 3$ 的卷积核nn.Conv2d(3, 1, 3),使用nn.init.xavier_normal*()方法初始化网络的权值。代码如下:

import os
import torch.nn as nn
from PIL import Image
from torchvision import transforms
from matplotlib import pyplot as plt
from common_tools import transform_invert, set_seed set_seed(3) # 设置随机种子 # ================================= load img ==================================
path_img = os.path.join(os.path.dirname(os.path.abspath(__file__)), "imgs", "lena.png")
print(path_img)
img = Image.open(path_img).convert('RGB') # 0~255 # convert to tensor
img_transform = transforms.Compose([transforms.ToTensor()])
img_tensor = img_transform(img)
# 添加 batch 维度
img_tensor.unsqueeze_(dim=0) # C*H*W to B*C*H*W # ================================= create convolution layer ================================== # ================ 2d
flag = 1
# flag = 0
if flag:
conv_layer = nn.Conv2d(3, 1, 3) # input:(i, o, size) weights:(o, i , h, w)
# 初始化卷积层权值
nn.init.xavier_normal_(conv_layer.weight.data)
# nn.init.xavier_uniform_(conv_layer.weight.data)
# calculation
img_conv = conv_layer(img_tensor) # ================ transposed
# flag = 1
flag = 0
if flag:
conv_layer = nn.ConvTranspose2d(3, 1, 3, stride=2) # input:(input_channel, output_channel, size)
# 初始化网络层的权值
nn.init.xavier_normal_(conv_layer.weight.data) # calculation
img_conv = conv_layer(img_tensor) # ================================= visualization ==================================
print("卷积前尺寸:{}\n卷积后尺寸:{}".format(img_tensor.shape, img_conv.shape))
img_conv = transform_invert(img_conv[0, 0:1, ...], img_transform)
img_raw = transform_invert(img_tensor.squeeze(), img_transform)
plt.subplot(122).imshow(img_conv, cmap='gray')
plt.subplot(121).imshow(img_raw)
plt.show()

卷积前后的图片如下 (左边是原图片,右边是卷积后的图片):

当改为使用`nn.init.xavier_uniform_()`方法初始化网络的权值时,卷积前后图片如下:

我们通过`conv_layer.weight.shape`查看卷积核的 shape 是`(1, 3, 3, 3)`,对应是`(output_channel, input_channel, kernel_size, kernel_size)`。所以第一个维度对应的是卷积核的个数,每个卷积核都是`(3,3,3)`。虽然每个卷积核都是 3 维的,执行的却是 2 维卷积。下面这个图展示了这个过程。

也就是每个卷积核在 input_channel 维度再划分,这里 input_channel 为 3,那么这时每个卷积核的 shape 是`(3, 3)`。3 个卷积核在输入图像的每个 channel 上卷积后得到 3 个数,把这 3 个数相加,再加上 bias,得到最后的一个输出。

转置卷积:nn.ConvTranspose()

转置卷积又称为反卷积 (Deconvolution) 和部分跨越卷积 (Fractionally strided Convolution),用于对图像进行上采样。

正常卷积如下:

原始的图片尺寸为 $4 \times 4$,卷积核大小为 $3 \times 3$,$padding =0$,$stride = 1$。由于卷积操作可以通过矩阵运算来解决,因此原始图片可以看作 $16 \times 1$ 的矩阵 $I_{16 \times 1}$,卷积核可以看作 $4 \times 16$ 的矩阵 $K_{4 \times 16}$,那么输出是 $K_{4 \times 16} \times I_{16 \times 1} = O_{4 \times 1}$ 。

转置卷积如下:

原始的图片尺寸为 $2 \times 2$,卷积核大小为 $3 \times 3$,$padding =0$,$stride = 1$。由于卷积操作可以通过矩阵运算来解决,因此原始图片可以看作 $4 \times 1$ 的矩阵 $I_{4 \times 1}$,卷积核可以看作 $4 \times 16$ 的矩阵 $K_{16 \times 4}$,那么输出是 $K_{16 \times 4} \times I_{4 \times 1} = O_{16 \times 1}$ 。

正常卷积核转置卷积矩阵的形状刚好是转置关系,因此称为转置卷积,但里面的权值不是一样的,卷积操作也是不可逆的。

PyTorch 中的转置卷积函数如下:

nn.ConvTranspose2d(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, output_padding=0, groups=1, bias=True,
dilation=1, padding_mode='zeros')

和普通卷积的参数基本相同,不再赘述。

转置卷积尺寸计算

简化版转置卷积尺寸计算

这里不考虑空洞卷积,假设输入图片大小为 $ I \times I$,卷积核大小为 $k \times k$,stride 为 $s$,padding 的像素数为 $p$,图片经过卷积之后的尺寸 $ O $ 如下,刚好和普通卷积的计算是相反的:

$O = (I-1) \times s + k$

完整版简化版转置卷积尺寸计算

$O = (I-1) \times s - 2 \times p + d \times (k-1) + out_padding + 1$

转置卷积代码示例如下:

import os
import torch.nn as nn
from PIL import Image
from torchvision import transforms
from matplotlib import pyplot as plt
from common_tools import transform_invert, set_seed set_seed(3) # 设置随机种子 # ================================= load img ==================================
path_img = os.path.join(os.path.dirname(os.path.abspath(__file__)), "imgs", "lena.png")
print(path_img)
img = Image.open(path_img).convert('RGB') # 0~255 # convert to tensor
img_transform = transforms.Compose([transforms.ToTensor()])
img_tensor = img_transform(img)
# 添加 batch 维度
img_tensor.unsqueeze_(dim=0) # C*H*W to B*C*H*W # ================================= create convolution layer ================================== # ================ 2d
# flag = 1
flag = 0
if flag:
conv_layer = nn.Conv2d(3, 1, 3) # input:(i, o, size) weights:(o, i , h, w)
# 初始化卷积层权值
nn.init.xavier_normal_(conv_layer.weight.data)
# nn.init.xavier_uniform_(conv_layer.weight.data) # calculation
img_conv = conv_layer(img_tensor) # ================ transposed
flag = 1
# flag = 0
if flag:
conv_layer = nn.ConvTranspose2d(3, 1, 3, stride=2) # input:(input_channel, output_channel, size)
# 初始化网络层的权值
nn.init.xavier_normal_(conv_layer.weight.data) # calculation
img_conv = conv_layer(img_tensor) # ================================= visualization ==================================
print("卷积前尺寸:{}\n卷积后尺寸:{}".format(img_tensor.shape, img_conv.shape))
img_conv = transform_invert(img_conv[0, 0:1, ...], img_transform)
img_raw = transform_invert(img_tensor.squeeze(), img_transform)
plt.subplot(122).imshow(img_conv, cmap='gray')
plt.subplot(121).imshow(img_raw)
plt.show()

转置卷积前后图片显示如下,左边原图片的尺寸是 (512, 512),右边转置卷积后的图片尺寸是 (1025, 1025)。

转置卷积后的图片一般都会有棋盘效应,像一格一格的棋盘,这是转置卷积的通病。

关于棋盘效应的解释以及解决方法,推荐阅读Deconvolution And Checkerboard Artifacts

参考资料

如果你觉得这篇文章对你有帮助,不妨点个赞,让我有更多动力写出好文章。

[PyTorch 学习笔记] 3.2 卷积层的更多相关文章

  1. CNN学习笔记:全连接层

    CNN学习笔记:全连接层 全连接层 全连接层在整个网络卷积神经网络中起到“分类器”的作用.如果说卷积层.池化层和激活函数等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的特征表示映射到样 ...

  2. CNN学习笔记:池化层

    CNN学习笔记:池化层 池化 池化(Pooling)是卷积神经网络中另一个重要的概念,它实际上是一种形式的降采样.有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见 ...

  3. Pytorch学习笔记(二)---- 神经网络搭建

    记录如何用Pytorch搭建LeNet-5,大体步骤包括:网络的搭建->前向传播->定义Loss和Optimizer->训练 # -*- coding: utf-8 -*- # Al ...

  4. 【pytorch】pytorch学习笔记(一)

    原文地址:https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html 什么是pytorch? pytorch是一个基于p ...

  5. 【深度学习】Pytorch 学习笔记

    目录 Pytorch Leture 05: Linear Rregression in the Pytorch Way Logistic Regression 逻辑回归 - 二分类 Lecture07 ...

  6. Pytorch学习笔记(一)——简介

    一.Tensor Tensor是Pytorch中重要的数据结构,可以认为是一个高维数组.Tensor可以是一个标量.一维数组(向量).二维数组(矩阵)或者高维数组等.Tensor和numpy的ndar ...

  7. tensorflow学习笔记——图像识别与卷积神经网络

    无论是之前学习的MNIST数据集还是Cifar数据集,相比真实环境下的图像识别问题,有两个最大的问题,一是现实生活中的图片分辨率要远高于32*32,而且图像的分辨率也不会是固定的.二是现实生活中的物体 ...

  8. [PyTorch 学习笔记] 3.1 模型创建步骤与 nn.Module

    本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/module_containers.py 这篇文章来看下 ...

  9. 莫烦 - Pytorch学习笔记 [ 二 ] CNN ( 1 )

    CNN原理和结构 观点提出 关于照片的三种观点引出了CNN的作用. 局部性:某一特征只出现在一张image的局部位置中. 相同性: 同一特征重复出现.例如鸟的羽毛. 不变性:subsampling下图 ...

随机推荐

  1. PHP ignore_user_abort() 函数

    实例 设置为 false(默认)- 与客户机断开会终止脚本的执行: <?phpignore_user_abort();?>高佣联盟 www.cgewang.com 上面代码的输出如下: 0 ...

  2. Phantomjs实现后端生成图片文件

    目录 PhantomJS简介 了解rasterize.js 使用方法 今天,给大家分享一个Java后端利用Phantomjs实现生成图片的功能,同学们使用的时候,可以参考下! PhantomJS简介 ...

  3. Spark中直接操作HDFS

    Spark作为一个基于内存的大数据计算框架,可以和hadoop生态的资源调度器和分布式文件存储系统无缝融合.Spark可以直接操作存储在HDFS上面的数据: 通过Hadoop方式操作已经存在的文件目录 ...

  4. ThinkPHP6 核心分析之应用程序初始化

    runWithRequest () 方法 在 Http 类的 run() 方法中,得到 think\Request 类的实例后,程序接着执行 $response = $this->runWith ...

  5. Apache Hudi + AWS S3 + Athena实战

    Apache Hudi在阿里巴巴集团.EMIS Health,LinkNovate,Tathastu.AI,腾讯,Uber内使用,并且由Amazon AWS EMR和Google云平台支持,最近Ama ...

  6. 学生成绩管理系统-JAVA语言测试

     首先右键新建一个工程project 选择Java Project,单击next下一步 project命名为“学生成绩管理系统”,点击finish继续 右键src文件夹新建Package包,取名为te ...

  7. Python预测2020高考分数和录取情况

    “迟到”了一个月的高考终于要来了. 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手.很多已经做案例的人,却不知道如何去学习更加高深的知识. ...

  8. Python selenium爬虫实现定时任务过程解析

    现在需要启动一个selenium的爬虫,使用火狐驱动+多线程,大家都明白的,现在电脑管家显示CPU占用率20%,启动selenium后不停的开启浏览器+多线程, 好,没过5分钟,CPU占用率直接拉到9 ...

  9. Python3,逻辑运算符

    优先级 ()>not>and>or 1.or 在python中,逻辑运算符or,x or y, 如果x为True则返回x,如果x为False返回y值.因为如果x为True那么or运算 ...

  10. 程序员必须了解!IntelliJ IDEA 2020.2的新增功能

    IDEA 因为之前破解过,所以家里的电脑都是19版本的,用的也比较顺手,也就一直懒得去动他,但是,程序猿的好奇心可能真的挺重,猎奇心里,在网上也看到了很多关于2020版本的idea的各种好处,于是,闲 ...