Spark SQL dropDuplicates
spark sql 数据去重
在对spark sql 中的dataframe数据表去除重复数据的时候可以使用dropDuplicates()
方法
dropDuplicates()有4个重载方法
- 第一个
def dropDuplicates(): Dataset[T] = dropDuplicates(this.columns)
这个方法,不需要传入任何的参数,默认根据所有列进行去重,然后按数据行的顺序保留每行数据出现的第一条。
/**
* Returns a new Dataset that contains only the unique rows from this Dataset.
* This is an alias for `distinct`.
*
* For a static batch [[Dataset]], it just drops duplicate rows. For a streaming [[Dataset]], it
* will keep all data across triggers as intermediate state to drop duplicates rows. You can use
* [[withWatermark]] to limit how late the duplicate data can be and system will accordingly limit
* the state. In addition, too late data older than watermark will be dropped to avoid any
* possibility of duplicates.
*
* @group typedrel
* @since 2.0.0
*/
def dropDuplicates(): Dataset[T] = dropDuplicates(this.columns)
- 第二个
def dropDuplicates(colNames: Seq[String])
传入的参数是一个序列。你可以在序列中指定你要根据哪些列的重复元素对数据表进行去重,然后也是返回每一行数据出现的第一条
/**
* (Scala-specific) Returns a new Dataset with duplicate rows removed, considering only
* the subset of columns.
*
* For a static batch [[Dataset]], it just drops duplicate rows. For a streaming [[Dataset]], it
* will keep all data across triggers as intermediate state to drop duplicates rows. You can use
* [[withWatermark]] to limit how late the duplicate data can be and system will accordingly limit
* the state. In addition, too late data older than watermark will be dropped to avoid any
* possibility of duplicates.
*
* @group typedrel
* @since 2.0.0
*/
def dropDuplicates(colNames: Seq[String]): Dataset[T] = withTypedPlan {
val resolver = sparkSession.sessionState.analyzer.resolver
val allColumns = queryExecution.analyzed.output
val groupCols = colNames.toSet.toSeq.flatMap { (colName: String) =>
// It is possibly there are more than one columns with the same name,
// so we call filter instead of find.
val cols = allColumns.filter(col => resolver(col.name, colName))
if (cols.isEmpty) {
throw new AnalysisException(
s"""Cannot resolve column name "$colName" among (${schema.fieldNames.mkString(", ")})""")
}
cols
}
Deduplicate(groupCols, planWithBarrier)
}
- 第三个
def dropDuplicates(colNames: Array[String])
传入的参数是一个数组,然后方法会把数组转换为序列然后再调用第二个方法。
/**
* Returns a new Dataset with duplicate rows removed, considering only
* the subset of columns.
*
* For a static batch [[Dataset]], it just drops duplicate rows. For a streaming [[Dataset]], it
* will keep all data across triggers as intermediate state to drop duplicates rows. You can use
* [[withWatermark]] to limit how late the duplicate data can be and system will accordingly limit
* the state. In addition, too late data older than watermark will be dropped to avoid any
* possibility of duplicates.
*
* @group typedrel
* @since 2.0.0
*/
def dropDuplicates(colNames: Array[String]): Dataset[T] = dropDuplicates(colNames.toSeq)
- 第四个
def dropDuplicates(col1: String, cols: String*)
传入的参数为字符串,在方法体内会把你传入的字符串组合成一个序列再调用第二个方法。
/**
* Returns a new [[Dataset]] with duplicate rows removed, considering only
* the subset of columns.
*
* For a static batch [[Dataset]], it just drops duplicate rows. For a streaming [[Dataset]], it
* will keep all data across triggers as intermediate state to drop duplicates rows. You can use
* [[withWatermark]] to limit how late the duplicate data can be and system will accordingly limit
* the state. In addition, too late data older than watermark will be dropped to avoid any
* possibility of duplicates.
*
* @group typedrel
* @since 2.0.0
*/
@scala.annotation.varargs
def dropDuplicates(col1: String, cols: String*): Dataset[T] = {
val colNames: Seq[String] = col1 +: cols
dropDuplicates(colNames)
}
第三和第四个本质上还是调用了第二个方法,所以我们在使用的时候如果需要根据指定的列进行数据去重,可以直接传入一个Seq。
第一个方法默认根据所有列去重,实际上也是调用了第二个方法,然后传入参数this.columns
,即所有的列组成的Seq。
所以各位想深究dropDuplicate()
去重的核心代码,只需要研究第二个去重方法即可。等我有时间我也会把去重的核心源码讲解继续补充。
dropDuplicates()的坑!
在使用dropDuplicates() 在去重的时候,我发现有时候还是会出现重复数据的情况。
我分析了一下还出现重复数据的原因:
- 数据存在多个excuter中
因为spark是分布式计算的,数据在计算的时候会分布在不同的excutor上,使用dropDuplicate去重的时候,可能只是一个excutor内的数据进行了去重,别的excutor上可能还会有重复的数据。
- 数据是存放在不同分区的,
因为spark是分布式计算的,数据在计算的时候会分散在不同的分区中,使用dropDuplicate去重的时候,不同的区分可能还会存在相同的数据。
我试了只启动一个excutor多分区的情况下进行计算,没有出现重复的数据,然后多个excutor将数据先合并到一个分区在去重还是有重复的数据。所以觉得可能是第一种猜测的情况比较大,但是如果只使用一个excutor就失去了分布式计算的意义和优势,所以还是得想想其它办法。
各位有什么好的解决办法也可以在评论区交流!
Spark SQL dropDuplicates的更多相关文章
- Spark2.x学习笔记:Spark SQL程序设计
1.RDD的局限性 RDD仅表示数据集,RDD没有元数据,也就是说没有字段语义定义. RDD需要用户自己优化程序,对程序员要求较高. 从不同数据源读取数据相对困难. 合并多个数据源中的数据也较困难. ...
- Spark SQL 之 Data Sources
#Spark SQL 之 Data Sources 转载请注明出处:http://www.cnblogs.com/BYRans/ 数据源(Data Source) Spark SQL的DataFram ...
- Spark SQL 之 DataFrame
Spark SQL 之 DataFrame 转载请注明出处:http://www.cnblogs.com/BYRans/ 概述(Overview) Spark SQL是Spark的一个组件,用于结构化 ...
- 【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL
周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark ...
- Spark 官方文档(5)——Spark SQL,DataFrames和Datasets 指南
Spark版本:1.6.2 概览 Spark SQL用于处理结构化数据,与Spark RDD API不同,它提供更多关于数据结构信息和计算任务运行信息的接口,Spark SQL内部使用这些额外的信息完 ...
- Spark SQL Example
Spark SQL Example This example demonstrates how to use sqlContext.sql to create and load a table ...
- 通过Spark SQL关联查询两个HDFS上的文件操作
order_created.txt 订单编号 订单创建时间 -- :: -- :: -- :: -- :: -- :: order_picked.txt 订单编号 订单提取时间 -- :: ...
- Spark SQL 之 Migration Guide
Spark SQL 之 Migration Guide 支持的Hive功能 转载请注明出处:http://www.cnblogs.com/BYRans/ Migration Guide 与Hive的兼 ...
- Spark SQL 官方文档-中文翻译
Spark SQL 官方文档-中文翻译 Spark版本:Spark 1.5.2 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 Data ...
随机推荐
- 记一次使用commit提交大文件无法推送到远程库解决问题过程及git rebase使用
记一次使用commit提交大文件无法推送到远程库解决问题过程及git rebase使用 目录 大文件无法push到远程仓库 问题 commit的大文件无法push到远程库解决办法 git filter ...
- Maven知识记录(一)初识Maven私服
Maven知识记录(一)初识Maven私服 什么是maven私服 私服即私有的仓库.maven把存放文件的地方叫做仓库,我们可以理解成我门家中的储物间.而maven把存放文件的具体位置叫做坐标.我们项 ...
- 学习java 线程池-1: ThreadPoolExecutor
1. Executor 该接口内只有一个接口方法 :该方法的目的就是执行指定的 Runnable (但会不会执行,或者会不会立马执行,则不一定.因为要取决于整个线程池的状态) Executor 中文的 ...
- 使用Flask开发简单接口(4)--借助Redis实现token验证
前言 在之前我们已开发了几个接口,并且可以正常使用,那么今天我们将继续完善一下.我们注意到之前的接口,都是不需要进行任何验证就可以使用的,其实我们可以使用 token ,比如设置在修改或删除用户信息的 ...
- 【转载】requests库的7个主要方法、13个关键字参数以及响应对象的5种属性
Python爬虫常用模块:requests库的7个主要方法.13个关键字参数以及响应对象的5种属性 原文链接: https://zhuanlan.zhihu.com/p/67489739
- 实验10—— java读取歌词文件内容动画输出
1.Read.java package cn.tedu.demo; import java.io.BufferedReader; import java.io.File; import java.io ...
- H5移动端手势密码组件
项目简介 最近参加了2017年360前端星计划,完成了一个有趣的UI组件开发大作业,借机和大家分享一下移动端开发的技术啦~~ 本项目采用原生JS和Canvas实现移动端手势密码组件,支持手势密码设置和 ...
- LINUX --- echo修改GPIO状态
GPIO sysfs Interface The GPIO sysfs interface allows users to manipulate any GPIO from userspace (al ...
- 026_go语言中的通道方向
代码演示 package main import "fmt" func ping(pings chan<- string, msg string) { pings <- ...
- 解放双手!用 Python 控制你的鼠标和键盘
在工作中难免遇到需要在电脑上做一些重复的点击或者提交表单等操作,如果能通过 Python 预先写好相关的操作指令,让它帮你操作,然后你自己去刷网页打游戏,岂不是很爽?] 很多人学习python,不知道 ...