[CSP-S2019]Emiya 家今天的饭 题解
CSP-S2 2019 D2T1
很不错的一题DP,通过这道题学到了很多。
身为一个对DP一窍不通的蒟蒻,在考场上还挣扎了1h来推式子,居然还有几次几乎推出正解,然而最后还是只能打个32分的暴搜滚粗
题意分析
给出一个矩阵,要求每行只能选一个节点,每列选的节点不能超过所有选的节点的一半,不能不选,给出每个节点的选择方案数,求总方案数
思路分析
可以看出,维护每列已选的节点复杂度太大,不太可行;因此很容易想到,先不考虑每列不超过一半的这个限制,求出总方案数,然后再减去考虑这个限制后不合法的方案数。现在问题就变成,求任意列选的节点超过所有选的节点的一半的方案数之和。
显然,在一个方案中,只可能有一列的节点超过所有选的节点的一半。因此可以想到枚举这个超过限制的列,然后对于这个列进行DP求解。
具体实现
设$f_{i,j,k}$表示前$i$行选$j$个节点,当前枚举到的列选$k$个节点的方案数。对于每个列,复杂度为$O(n^3)$,总的复杂度为$O(mn^3)$,可以得到84分的高分。
想得到满分还需要进一步优化。考虑将某两个状态合并。观察状态,实际上我们想知道的只是$j,k$的大小关系,对于具体的值并不关心,考虑将它们合并到一维。
考虑我们需要的限制条件$k>\left \lfloor \frac{j}{2} \right \rfloor$,变形一下可以得到$2k+n-j>n$。观察这个式子,可以发现,$n-j$就是这$n$行里没有选的行数。然后一个奇妙的想法就出来了,对于每个节点,选它时当做该列选了两次,而对于某一行不选时,当做所有列选了一次,最终要找的就是当前列被选超过$n$次的方案。这样就成功地优化掉了第二维。
给一下状态转移方程:
f[j][k]=(f[j][k]+f[j-1][k]*(cnt[j]-w[j][i]))%P;//不选当前列
f[j][k+1]=(f[j][k+1]+f[j-1][k])%P;//不选当前行
f[j][k+2]=(f[j][k+2]+f[j-1][k]*w[j][i])%P;//选当前行当前列对应的节点
注意取模时出现负数的情况,记得开long long。
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int N=200,M=3000,P=998244353;//FFT(雾
int n,m;
ll ans=1;
ll cnt[N],w[N][M],f[N][M];
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
scanf("%lld",&w[i][j]),cnt[i]=(cnt[i]+w[i][j])%P;
ans=(ans*(cnt[i]+1))%P;//计算全部答案
}
ans=(ans+P-1)%P;//减去全部不选的情况
for(int i=1;i<=m;i++)
{
memset(f,0,sizeof(f));
f[0][0]=1;//DP初值
for(int j=1;j<=n;j++)
for(int k=0;k<=2*(j-1);k++)
{
f[j][k]=(f[j][k]+f[j-1][k]*(cnt[j]-w[j][i]))%P;
f[j][k+1]=(f[j][k+1]+f[j-1][k])%P;
f[j][k+2]=(f[j][k+2]+f[j-1][k]*w[j][i])%P;
}
for(int j=n+1;j<=2*n;j++)
ans=(ans+P-f[n][j])%P;//减去当前枚举到的不合法方案
}
printf("%lld",ans);
return 0;
}
[CSP-S2019]Emiya 家今天的饭 题解的更多相关文章
- 洛谷P5664 Emiya 家今天的饭 题解 动态规划
首先来看一道题题: 安娜写宋词 题目背景 洛谷P5664 Emiya 家今天的饭[民间数据] 的简化版本. 题目描述 安娜准备去参加宋词大赛,她一共掌握 \(n\) 个 词牌名 ,并且她的宋词总共有 ...
- csp2019 Emiya家今天的饭题解
qwq 由于窝太菜了,实在是不会,所以在题解的帮助下过掉了这道题. 写此博客来整理一下思路 正文 传送 简化一下题意:现在有\(n\)行\(m\)列数,选\(k\)个数的合法方案需满足: 1.一行最多 ...
- CSP2019 Emiya 家今天的饭 题解
这题在考场上只会O(n^3 m),拿了84分.. 先讲84分,考虑容斥,用总方案减去不合法方案,也就是枚举每一种食材,求用它做超过\(\lfloor \frac{k}{2} \rfloor\) 道菜的 ...
- 洛谷P5664 Emiya 家今天的饭 问题分析
首先来看一道我编的题: 安娜写宋词 题目背景 洛谷P5664 Emiya 家今天的饭[民间数据] 的简化版本. 题目描述 安娜准备去参加宋词大赛,她一共掌握 \(n\) 个 词牌名 ,并且她的宋词总共 ...
- Emiya家今天的饭 NOIP2019 (CSP?) 类DP好题 luoguP5664
luogu题目传送门! 首先,硬求可行方案数并不现实,因为不好求(去年考场就这么挂的,虽然那时候比现在更蒟). 在硬搞可行方案数不行之后,对题目要求的目标进行转换: 可行方案数 = 总方案数 - 不合 ...
- 【CSP-S 2019】【洛谷P5664】Emiya 家今天的饭【dp】
题目 题目链接:https://www.luogu.org/problem/P5664 Emiya 是个擅长做菜的高中生,他共掌握 \(n\) 种烹饪方法,且会使用 \(m\) 种主要食材做菜.为了方 ...
- 【NOIP/CSP2019】D2T1 Emiya 家今天的饭
这个D2T1有点难度啊 原题: 花了我一下午的时间,作为D2T1的确反常 条件很奇怪,感觉不太直观,于是看数据范围先写了个暴力 写暴力的时候我就注意到了之前没有仔细想过的点,烹饪方式必须不同 虽然a很 ...
- P5664 Emiya 家今天的饭
题面 link 前言 去年把我做自闭的一道题,看了一眼题面,发现只有 t1 有点思路,结果写到一半发现自己读错题了,又只能花时间来重构,结果后面的暴力一点都没写(主要是自己当时不会) 然后,这道题还因 ...
- 洛谷 P5664 [CSP-S2019] Emiya 家今天的饭
链接: P5664 题意: 给出一个 \(n*m\) 的矩阵 \(a\),选 \(k\) 个格子(\(1\leq k\leq n\)),每行最多选一个,每列最多选\(⌊\dfrac k2⌋\) 个,同 ...
随机推荐
- 【保姆级教学】新手第一次搭建vue项目和初始化
前端项目初始化步骤 安装vue脚手架 通过vue脚手架创建项目 配置vue路由 配置Element-UI组件库 配置axios库 初始化git远程仓库 将本地项目托管到github或者码云上 通过vu ...
- Python os.lchown() 方法
概述 os.lchown() 方法用于更改文件所有者,类似 chown,但是不追踪链接.高佣联盟 www.cgewang.com 只支持在 Unix 下使用. 语法 lchown()方法语法格式如下: ...
- PHP imagearc - 画椭圆弧
imagearc — 用于画椭圆弧.高佣联盟 www.cgewang.com 语法 bool imagearc ( resource $image , int $cx , int $cy , int ...
- PHP bin2hex() 函数
实例 把 "Hello World!" 转换为十六进制值: <?php 高佣联盟 www.cgewang.com$str = bin2hex("Hello Worl ...
- 3.28 省选模拟赛 染色 LCT+线段树
发现和SDOI2017树点涂色差不多 但是当时这道题模拟赛的时候不会写 赛后也没及时订正 所以这场模拟赛的这道题虽然秒想到了LCT和线段树但是最终还是只是打了暴力. 痛定思痛 还是要把这道题给补了. ...
- ZR 提高十连 DAY 4
哇 这题目怎么一次比一次毒瘤 当然这次还好 有会做的题目. T1 一眼看上去 毒瘤!再看一眼 我真不想看了 扔了. T2 哇感觉能写 哇这不是 随便都有40分了么 二分?优化一下65到手了.然后剩下的 ...
- LVS-NAT:搭建HTTP及HTTPS负载均衡集群
目录 LVS-NAT:搭建HTTP及HTTPS负载均衡集群 环境说明: 搭建NAT模式的HTTP负载集群 1. 配置好IP地址信息 2. DR上开启IP转发 3.DR上配置lvs-nat的转发机制 4 ...
- 埋在MySQL数据库应用中的17个关键问题!
作者:扎瓦陈序元 来源:https://blog.csdn.net/weixin_42882439 MySQL的使用非常普遍,跟MySQL有关的话题也非常多,如性能优化.高可用性.强一致性.安全.备份 ...
- 使用Flask开发简单接口(1)--GET请求接口
前言 很多想学习接口测试的同学,可能在最开始的时候,常常会因没有可以练习的项目而苦恼,毕竟网上可以练习的接口项目不多,有些可能太简单了,有些可能又太复杂了,或者是网上一些免费接口请求次数有限制,最终导 ...
- python5.1文件的读取
fh1=open(r"C:\222.txt","r")#用open函数读取文件,“r”进行转义,fh1文件句柄data=fh1.read()#把读取的句柄赋值给 ...