Codeforces Edu Round 48 A-D
A. Death Note
简单模拟,可用\(\%\)和 \(/\)来减少代码量
#include <iostream>
#include <cstdio>
using namespace std;
const int N = 200010;
int n, m, a[N], cnt = 0, tot = 0;
int main(){
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++){
scanf("%d", a + i);
cnt = (tot + a[i]) / m;
tot = (tot + a[i]) % m;
printf("%d ", cnt);
}
}
B - Segment Occurrences
预处理\(A、B\)的\(Hash\)表,可以将时间复杂度降到\(O(qn)\)
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
typedef unsigned long long ULL;
const int N = 1010, B = 221;
int n, m, q, len;
char s[N], t[N];
ULL P[N], S[2][N];
ULL inline get(int l, int r, int c){
return S[c][r] - S[c][l - 1] * P[r - l + 1];
}
int main(){
scanf("%d%d%d%s%s", &n, &m, &q, s + 1, t + 1);
P[0] = 1;
for(int i = 1; i <= n; i++){
P[i] = P[i - 1] * B;
S[0][i] = S[0][i - 1] * B + s[i];
S[1][i] = S[1][i - 1] * B + t[i];
}
while(q--){
int l, r, res = 0; scanf("%d%d", &l, &r);
for(int i = l; i <= r - m + 1; i++)
if(get(i, i + m - 1, 0) == get(1, m, 1))res++;
printf("%d\n", res);
}
return 0;
}
C - Vasya And The Mushrooms
硬核模拟 + 前缀和处理。要不重复的绕完 \(2 * N\) 的格子,从左上角出发,要么\(S\)形绕几次然后绕大圈,要么绕整个的一圈。
可以枚举绕\(S\)格子的次数,\(S\)的部分可以前缀和计算,系数是一样的,后面的部分计算比较复杂。
第一种情况,前面的部分绕了了几个完整的 \(U\)。要从上方出发。
求(\(now\)代表\(U\)字结束(包括)的列数):
上半部分:$\sum_{i=now + 1}^n a[0][i] * (i * 2) $
我们发现,数列后缀和的后缀和是:
\(sufx[j] = \sum_{i = j} ^ n a[i] * (i - j + 1) = a[j] * 1 + a[j + 1] * 2 + … + a[n] * (n - j + 1)\)
故,把\(sufx[now + 1]\)再加上\(\sum_{i = j} ^ n a[i] * (i * 2 - 1)\),即为答案,后面这部分可用后缀和\(O(1)\)计算。
下半部分:$\sum_{i=now + 1}^n a[1][i] * (n + (n - i + 1)) $
我们想要这样的东西:
\(a[i] * 3 + a[i + 1] * 2 + a[i + 2] * 1\)
这个看上去很像\(Hash\)表的原理,只不过\(b = 1\),可以用hash表的思想在\(O(1)\) 求出这个,然后在用后缀和加上系数既可。
对于第二种情况,只不过将上下颠倒,我们互换一下处理方式既可。
预处理前缀和、后缀和和枚举\(S\)的时间都为\(O(n)\),每次求解只需\(O(1)\),故总共复杂度为$ O(n) $的
#include <cstdio>
#include <iostream>
#include <cmath>
using namespace std;
typedef long long LL;
const int N = 300010;
//s形的预处理
int n, a[2][N];
LL pre[2][N], s[2][N], suf[2][N], sum[N], prex[2][N], sufx[2][N], ans = -1;
int main(){
scanf("%d", &n);
for(int i = 1; i <= n; i++) scanf("%d", &a[0][i]);
for(int i = 1; i <= n; i++) scanf("%d", &a[1][i]);
int S = n >> 1, tot = 0;
for(int i = 1; i <= S * 2; i+=2){
s[0][i] = (LL)a[0][i] * (tot++); s[1][i] = (LL)a[1][i] * (tot++);
s[1][i + 1] = (LL)a[1][i + 1] * (tot++); s[0][i + 1] = (LL)a[0][i + 1] * (tot++);
}
for(int i = 0; i < 2; i++)
for(int j = 1; j <= n; j++){
pre[i][j] = pre[i][j - 1] + a[i][j];
prex[i][j] = prex[i][j - 1] + pre[i][j];
}
for(int j = 0; j < 2; j++)
for(int i = n; i >= 1; i--){
suf[j][i] = suf[j][i + 1] + a[j][i];
sufx[j][i] = sufx[j][i + 1] + suf[j][i];
}
for(int i = 0; i <= n; i++){
LL tot = sum[i] = sum[i - 1] + s[0][i] + s[1][i];
//如果是奇数,则在下面出发
if(i % 2){
tot += (n + i - 1) * suf[0][i + 1] + (prex[0][n] - prex[0][i] - (n - i) * pre[0][i]);
tot += (i * 2 - 1) * suf[1][i + 1] + (sufx[1][i + 1]);
}else{
//从上面出发
tot += (i * 2 - 1) * suf[0][i + 1] + (sufx[0][i + 1]);
tot += (n + i - 1) * suf[1][i + 1] + (prex[1][n] - prex[1][i] - (n - i) * pre[1][i]);
}
ans = max(ans, tot);
}
printf("%lld", ans);
return 0;
}
D - Vasya And The Matrix
参考题解。 存在性参考异或的性质,\(x\) \(xor\) $ x = 0$ 。
考虑构造一个合理的序列,只需将除了最后一行,最后一列的所有数添上\(0\)。
除右下角外其他数照搬数据,右下角用异或尝试既可。
#include <iostream>
#include <cstdio>
using namespace std;
const int N = 110;
int n, m, a[N], b[N], ans = 0;
int main(){
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++) scanf("%d", a + i), ans ^= a[i];
for(int i = 1; i <= m; i++) scanf("%d", b + i), ans ^= b[i];
if(ans != 0)puts("NO");
else{
puts("YES");
ans = b[m];
for(int i = 1; i < n; i++){
for(int j = 1; j < m; j++)
printf("0 ");
printf("%d\n", a[i]);
ans ^= a[i];
}
b[m] = ans;
for(int i = 1; i <= m; i++) printf("%d ", b[i]);
}
return 0;
}
Codeforces Edu Round 48 A-D的更多相关文章
- Educational Codeforces Round 48 (Rated for Div. 2) CD题解
Educational Codeforces Round 48 (Rated for Div. 2) C. Vasya And The Mushrooms 题目链接:https://codeforce ...
- Codeforces Beta Round #80 (Div. 2 Only)【ABCD】
Codeforces Beta Round #80 (Div. 2 Only) A Blackjack1 题意 一共52张扑克,A代表1或者11,2-10表示自己的数字,其他都表示10 现在你已经有一 ...
- Codeforces Beta Round #62 题解【ABCD】
Codeforces Beta Round #62 A Irrational problem 题意 f(x) = x mod p1 mod p2 mod p3 mod p4 问你[a,b]中有多少个数 ...
- Codeforces Beta Round #83 (Div. 1 Only)题解【ABCD】
Codeforces Beta Round #83 (Div. 1 Only) A. Dorm Water Supply 题意 给你一个n点m边的图,保证每个点的入度和出度最多为1 如果这个点入度为0 ...
- Codeforces Beta Round #13 C. Sequence (DP)
题目大意 给一个数列,长度不超过 5000,每次可以将其中的一个数加 1 或者减 1,问,最少需要多少次操作,才能使得这个数列单调不降 数列中每个数为 -109-109 中的一个数 做法分析 先这样考 ...
- CodeForces Global Round 1
CodeForces Global Round 1 CF新的比赛呢(虽然没啥区别)!这种报名的人多的比赛涨分是真的快.... 所以就写下题解吧. A. Parity 太简单了,随便模拟一下就完了. B ...
- Codeforces Global Round 1 - D. Jongmah(动态规划)
Problem Codeforces Global Round 1 - D. Jongmah Time Limit: 3000 mSec Problem Description Input Out ...
- Codeforces Beta Round #79 (Div. 2 Only)
Codeforces Beta Round #79 (Div. 2 Only) http://codeforces.com/contest/102 A #include<bits/stdc++. ...
- Codeforces Beta Round #77 (Div. 2 Only)
Codeforces Beta Round #77 (Div. 2 Only) http://codeforces.com/contest/96 A #include<bits/stdc++.h ...
随机推荐
- 位图bitmap应用
所有比特的编号方法是,从低字节的低位比特位开始,第一个bit为0,最后一个bit为 n-1. 比如说,现在有个数组是这样子的,int a[4],那么a[0]的比特位为0--31a[1]的比特位为32- ...
- 如何实现Http请求报头的自动转发[应用篇]
如今的应用部署逐渐向微服务化发展,导致一个完整的事务往往会跨越很多的应用或服务,出于分布式链路跟踪的需要,我们往往将从上游服务获得的跟踪请求报头无脑地向下游服务进行转发.本文介绍的这个名为Header ...
- 03 原型模式(prototype)
03 原型模式(prototype) 1 克隆羊问题 现在有一只羊tom,姓名为: tom.年龄为: 1,颜色为:白色,请编写程序创建和tom羊属性完全相同的10只羊. 2 传统方式解决 思路 cla ...
- MySQL全面瓦解12:连接查询的原理和应用
概述 MySQL最强大的功能之一就是能在数据检索的执行中连接(join)表.大部分的单表数据查询并不能满足我们的需求,这时候我们就需要连接一个或者多个表,并通过一些条件过滤筛选出我们需要的数据. 了解 ...
- Hive 报错Class path contains multiple SLF4J bindings.
进入hive报错信息如下 SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/ ...
- HDU100题简要题解(2070~2079)
HDU2070 Fibbonacci Number 题目链接 Problem Description Your objective for this question is to develop a ...
- ABAP CDS-介绍(ABAP CDS视图)
前言 文章翻译自Tushar Sharma的文章,转载请注明原作者和译者! 在SAP发展到SAP HANA版本之后,SAP内部的技术正在快速地变化,SAP开发业务应用程序的方式已经发生了范式转变(根本 ...
- Mac支持的网络游戏有哪些?怎么支持Windows游戏?
"游戏是这个世界上唯一能和女性争夺男朋友的东西(/滑稽,有不少女生也喜欢玩游戏)."虽然只是一句玩笑话,不过也可以看出游戏对大多数男生来说是必不可少的一项娱乐活动了.而网络游戏是游 ...
- Linux中redis服务开启docker运行redis并设置密码
//查询目前可用的reids镜像 docker search redis //选择拉取官网的镜像 docker pull redis //查看本地是否有redis镜像 docker images // ...
- 2017-2018 ACM-ICPC Latin American Regional Programming Contest J - Jumping frog 题解(gcd)
题目链接 题目大意 一只青蛙在长度为N的字符串上跳跃,"R"可以跳上去,"P"不可以跳上去. 字符串是环形的,N-1和0相连. 青蛙的跳跃距离K的取值范围是[1 ...