本题解用于本蒟蒻加深算法印象,也欢迎大家阅读


本篇题解将分为四块,一步一步地讲解本题,

Part 1: O(n^3)

\(n^3\) 算法应该非常的显然,我们设 \(f_{i,j}\) 为到 \(i\) 个任务,分为 \(j\) 个批次所使用的最少时间,易得转移方程为:

\[\begin{array}{c}
f_{i,j}=min(f_{k,j-1}+(sumt_i+s*j)*(suma_i-suna_k))\\
(0\le k<i)
\end{array}
\]

但是这个复杂很明显是过不了的( \(O(n^2)\) 都过不了,这还想过???),所以我们考虑优化。

Part 2: O(n^2)

因为每一个前面的 \(s\) 是每次会对后面的动态规划产生影响的,所以我们考虑在设计状态的时候就将 \(s\) 考虑进去,即 \(f_i\) 表示到第 \(i\) 个点,前面 \(i\) 个点的实际用时与 \(s\) 对于后面的影响值的和最小值,这个思想叫做费用提前,我们可以结合状态转移方程来一起食用:

\[\begin{array}{c}
f_i=min(f_j+sumt_i*(suma_i-suma_j)+s*(suma_n-suma_j)\\
(0\le j<i)
\end{array}
\]

看上去好像没什么问题,最优子结构是成立的,这个复杂度是 \(O(n^2)\) 。

Part 3: O(n)

来到今天的重头戏——斜率优化

我们可以先看看这题的弱化版。转移方程和题目大意是一模一样的,唯一的不同点是 \(t_i\) 是非负的。

对于上面的状态的转移方程,我们进行一些移项:

\[\begin{array}{c}
f_i=min(f_j+sumt_i*(suma_i-suma_j)+s*(suma_n-suma_j)\\
\\
f_i=f_j+sumt_i*suma_i-sumt_i*suma_j+s*suma_n-s*suma_j\\
\\
f_j=(sumt_i+s)*suma_j+f_i-sumt_i*suma_i-s*suma_n
\end{array}
\]

此时,如果我们将 \(suma_j\) 看作自变量, \(f_j\) 看作因变量,对于每一个 \(i\) , \(sumt_i\),\(suma_i\),\(suma_n\),\(s\)又都是定值,我们可以将这个式子看作一个待定 \(f_i\) 值的函数。

对于这个函数,我们要使得 \(f_i\) 的数值最小,就是使得函数的截距最小(因为其他的都是定植),而如何找到使得函数截距最小的点呢?我们来画一下图:

可以发现,我们将这个函数的直线向上移动的时候,最先碰到的一个点就是满足条件的点,而我们如何维护这么一个点呢,我们可以发现一些可能的点的性质:

  1. 任意两个可能的点的连线下侧不能有点存在

  2. 所有可能被选中的点构成的集合中,相邻的两个点的斜率是单调递增的,即下凸壳。

大家可以结合图像理解理解:

因为这个函数的斜率 \(sumt_i+s\) 是单调递增的,因为 \(t_i\) 是非负的,所以我们可以发现,对于已经放弃的点,最后也不可能被重新启用。

而每进入一个点时,由于 \(suma_i\) 是单调递增的(因为 \(a_i\) 是非负的),所以我们是向着 \(x\) 轴正方向更新点的,根据性质 \(1\) ,如果这个点向当前最右点连线后,有点出现在直线的下方,则说明最右点不成立,而之后也不可能成立。

结合上面两种操作和性质 \(2\) ,我们可以想到用单调队列维护,维护方式就是上面的操作。

代码如下:

while(head<tail&&cal(q[head],q[head+1])<=sumt[i]+s)
++head;
f[i]=f[q[head]]+sumt[i]*(suma[i]-suma[q[head]])+s*(suma[n]-suma[q[head]]);
while(head<tail&&cal(q[tail-1],q[tail])>=cal(q[tail-1],i))
--tail;
q[++tail]=i;

Part 4: O(nlogn)

而针对这一道题目,我们可以发现 \(t_i\) 是有负的,所以我们第一操作就必须放弃了,因为函数的斜率并非是单调递增的。

但是我们依旧可以维护下凸壳的单调性,而对于当前遍历到的函数斜率,我们可以通过二分的方式找到符合条件的点,即该点与其左侧点的连线斜率小于函数斜率,该点与其右侧殿的连线的斜率大于函数斜率。

代码如下:

int l=head,r=tail-1,mid,res=q[tail];
while(l<=r)
{
mid=(l+r)>>1;
if(cal(q[mid],q[mid+1])>sumt[i]+s)
{
res=q[mid];
r=mid-1;
}
else
l=mid+1;
}
f[i]=f[res]+sumt[i]*(suma[i]-suma[res])+s*(suma[n]-suma[res]);
while(head<tail&&cal(q[tail-1],q[tail])>=cal(q[tail-1],i))
--tail;
q[++tail]=i;

总结

我们可以发现,得出斜率优化函数的方法是提取出关于 \(j\) 项,只要能拆出关于 \(j\) 的一次项,剩下的项塞到等号的另一边,就可以进行斜率优化了。

P5785 [SDOI2012]任务安排的更多相关文章

  1. 洛谷 P5785 [SDOI2012] 任务安排

    链接: P5785 弱化版:P2365 题意: 有 \(n\) 个任务待完成,每个任务有一个完成时间 \(t_i\) 和费用系数 \(f_i\),相邻的任务可以被分成一批.从零时刻开始这些任务会被机器 ...

  2. BZOJ 2726: [SDOI2012]任务安排( dp + cdq分治 )

    考虑每批任务对后面任务都有贡献, dp(i) = min( dp(j) + F(i) * (T(i) - T(j) + S) ) (i < j <= N)  F, T均为后缀和. 与j有关 ...

  3. [bzoj P2726] [SDOI2012]任务安排

    [bzoj P2726] [SDOI2012]任务安排 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1204 Solved: 349[Submit] ...

  4. BZOJ 2726: [SDOI2012]任务安排 [斜率优化DP 二分 提前计算代价]

    2726: [SDOI2012]任务安排 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 868  Solved: 236[Submit][Status ...

  5. 【BZOJ2726】[SDOI2012]任务安排 斜率优化+cdq分治

    [BZOJ2726][SDOI2012]任务安排 Description 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这N个任务被分成若 ...

  6. [BZOJ2726][SDOI2012]任务安排(DP+凸壳二分)

    2726: [SDOI2012]任务安排 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1580  Solved: 466[Submit][Statu ...

  7. BZOJ_2726_[SDOI2012]任务安排_斜率优化+二分

    BZOJ_2726_[SDOI2012]任务安排_斜率优化+二分 Description 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这 ...

  8. 笔记-[SDOI2012]任务安排

    笔记-[SDOI2012]任务安排 [SDOI2012]任务安排 \(f_i\) 表示分配到第 \(i\) 个任务的最小费用. 令 \(st_i=\sum_{h=1}^iT_h\),\(sc_i=\s ...

  9. bzoj 2726: [SDOI2012]任务安排

    Description 机 器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这N个任务被分成若干批,每批包含相邻的 若干任务.从时刻0开始,这 ...

随机推荐

  1. uboot分析——makefile

    1.makefile分析 $(TOPDIR)/makefile | |-----> include $(obj)/include/config.mk  确定板子环境 | || | V |---- ...

  2. ceph的pg平衡插件balancer

    前言 ceph比较老的版本使用的reweight或者osd weight来调整平衡的,本篇介绍的是ceph新的自带的插件balancer的使用,官网有比较详细的操作手册可以查询 使用方法 查询插件的开 ...

  3. linux 更改mysql 数据存储目录

    https://www.cnblogs.com/hellangels333/p/8376177.html  参考位博主的文章,稍做改动 1.检查mysql数据库存放目录 mysql -u root - ...

  4. DNS系列—DNS简介

    DNS是什么? 如果了解互联网主机之间是用IP地址来进行通信的话,有了这个认识的前提,我们来聊一下什么是DNS.一个IP地址有十几个字符那么长,和手机号码长度差不多,我们怎么记住这些我们想要访问的主机 ...

  5. 从零做网站开发:基于Flask和JQuery,实现表格管理平台

    摘要:本文将为大家带来基于Flask框架和JQuery实现管理平台网站的开发功能. [写在前面] 你要开发网站? 嗯.. 会Flask吗? 什么东西,没听过... 会JQuery吗? 是python的 ...

  6. LeetCode 045 Jump Game II

    题目要求:Jump Game II Given an array of non-negative integers, you are initially positioned at the first ...

  7. java40

    时隔小半年,重新捡起Java的学习 问题: 1.eclipse好久没用,再打开时,eclipse的项目都没有了,如何找回? 打开switch-workplace-other点开,选择以前的文件所在处. ...

  8. 重做系统后 恢复oracle 实例

    第一次进行操作,按照网上方法,试了一遍,很多细节搞不清楚,但是还是要记录一下. 备份 old数据库 所用到文件有: XXXXXX\product\11.2.0\dbhome_1\database\pw ...

  9. 一种更优雅的Flutter Dialog解决方案

    前言 系统自带的Dialog实际上就是Push了一个新页面,这样存在很多好处,但是也存在一些很难解决的问题 必须传BuildContext loading弹窗一般都封装在网络框架中,多传个contex ...

  10. Fiddler 4 对app接口抓取

    一.先打开模拟器 二.在Fiddler 4 选项中修改端口号和去掉一个勾选 三.在终端查看ip 输入ipconfig 四.点开模拟器的设置 五.点击WLAN 六.长按网络,修改网络 七.输入ip端口号 ...