Construct a Matrix (矩阵快速幂+构造)
1. The matrix is a S(n)×S(n) matrix;
2. S(n) is the sum of the first n Fibonacci numbers modulus m, that is S(n) = (F1 + F2 + … + Fn) % m;
3. The matrix contains only three kinds of integers ‘0’, ‘1’ or ‘-1’;
4. The sum of each row and each column in the matrix are all different.
Here, the Fibonacci numbers are the numbers in the following sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …
By definition, the first two Fibonacci numbers are 1 and 1, and each remaining number is the sum of the previous two.
In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation Fn = Fn-1 + Fn-2, with seed values F1 = F2 = 1.
Given two integers n and m, your task is to construct the matrix.
Input
Output
Sample Input
2
2 3
5 2
Sample Output
Case 1: Yes
-1 1
0 1
Case 2: No 难点在于构造:
构造方式 下三角为-1,上三角为 1,主对角-1 0 排列 ,主要是奇数和0的也不存在
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<vector>
#include<map>
#include<cmath>
const int maxn=1e5+;
typedef long long ll;
using namespace std;
struct Mat
{
ll a[][];
}; int mod;
Mat Mul(Mat a,Mat b)
{
Mat ans;
memset(ans.a,,sizeof(ans.a));
for(int t=;t<;t++)
{
for(int j=;j<;j++)
{
for(int k=;k<;k++)
{
ans.a[t][j]=(ans.a[t][j]+a.a[t][k]*b.a[k][j])%mod;
}
}
}
return ans;
}
Mat ans;
ll quickpow(int n)
{
Mat res;
res.a[][]=;
res.a[][]=;
res.a[][]=;
res.a[][]=;
res.a[][]=;
res.a[][]=;
res.a[][]=;
res.a[][]=;
res.a[][]=; while(n)
{
if(n&)
{
ans=Mul(res,ans);
}
res=Mul(res,res);
n>>=;
}
return ans.a[][];
}
int main()
{
int T;
cin>>T;
int n;
int cnt=;
while(T--)
{
scanf("%d%d",&n,&mod);
memset(ans.a,,sizeof(ans.a));
ans.a[][]=;
ans.a[][]=;
ans.a[][]=;
ll aa=quickpow(n-)%mod;
if(aa&||aa==)
{
printf("Case %d: No\n",cnt++);
}
else
{
printf("Case %d: Yes\n",cnt++);
for(int t=;t<aa;t++)
{
for(int j=;j<aa;j++)
{
if(t>j)
{
printf("-1 ");
}
if(t<j)
{
printf("1 ");
}
if(t==j&&t%==)
{
printf("-1 ");
}
if(t==j&&t%==)
{
printf("0 ");
}
}
printf("\n");
}
} }
return ;
}
Construct a Matrix (矩阵快速幂+构造)的更多相关文章
- fzu 1911 Construct a Matrix(矩阵快速幂+规律)
题目链接:fzu 1911 Construct a Matrix 题目大意:给出n和m,f[i]为斐波那契数列,s[i]为斐波那契数列前i项的和.r = s[n] % m.构造一个r * r的矩阵,只 ...
- 233 Matrix 矩阵快速幂
In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...
- HDU - 5015 233 Matrix (矩阵快速幂)
In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...
- UVa 11149 Power of Matrix (矩阵快速幂,倍增法或构造矩阵)
题意:求A + A^2 + A^3 + ... + A^m. 析:主要是两种方式,第一种是倍增法,把A + A^2 + A^3 + ... + A^m,拆成两部分,一部分是(E + A^(m/2))( ...
- HDU 5015 233 Matrix --矩阵快速幂
题意:给出矩阵的第0行(233,2333,23333,...)和第0列a1,a2,...an(n<=10,m<=10^9),给出式子: A[i][j] = A[i-1][j] + A[i] ...
- 233 Matrix(矩阵快速幂+思维)
In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...
- HDU5015 233 Matrix —— 矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-5015 233 Matrix Time Limit: 10000/5000 MS (Java/Others) Memor ...
- UVa 11149 Power of Matrix 矩阵快速幂
题意: 给出一个\(n \times n\)的矩阵\(A\),求\(A+A^2+A^3+ \cdots + A^k\). 分析: 这题是有\(k=0\)的情况,我们一开始先特判一下,直接输出单位矩阵\ ...
- hdu6470 矩阵快速幂+构造矩阵
http://acm.hdu.edu.cn/showproblem.php?pid=6470 题意 \(f[n]=2f[n-2]+f[n-1]+n^3,n \leq 10^{18}\),求f[n] 题 ...
随机推荐
- vue中一些常见的面试题
前言 一位正在学习前端的菜鸟,虽菜,但还未放弃. 内容 1,说一下vue中的指令 答: ①,v-html:主要用来渲染html节点,其作用与原生的innerHtml基本一致 ②,v-text:主要用来 ...
- 解惑4:java是值传递还是引用传递
一.概述 曾经纠结了很久java的参数传递方式是什么样的,后面粗略的了解了一鳞半爪以后有了大概的印象:"传参数就是值传递,传对象就是引用传递",后面进一步查找了相关资料和文章以后, ...
- 这几个冷门却实用的 Python 库,我爱了!
- Python3 网络爬虫:漫画下载,动态加载、反爬虫这都不叫事
一.前言 作者:Jack Cui 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手.很多已经做案例的人,却不知道如何去学习更加高深的知识.那 ...
- IDEA的基本使用技巧
博主在大学里学习的专业是计算机科学与技术,在大三的时候才开始接触 “加瓦”,学习加瓦首先就需要一个运行环境,因为受到了老师们的影响,我第一个编辑JAVA的软件环境便是Eclipse,在学校里学习和使用 ...
- @Repository注解和@Mapper注解区别
@Reponsitory注解 @Reponsitory使用后,在启动类上需要添加@MapperScan("xxx.xxx.xxx.mapper")注解 @Mapper注解 @Map ...
- Fixing the train-test resolution discrepancy
- Eclipse开发Android项目报错解决方案详细教程,最新版一篇就够了!
本文记录刚接触Android开发搭建环境后新建工程各种可能的报错,并亲身经历漫长的解决过程(╥╯^╰╥),寻找各种偏方,避免大家采坑,希望能帮助到大家. 报错信息 出错一:The import and ...
- axios的post请求返回状态码400
设置拦截 axios.interceptors.request.use((config) => { if (config.method === 'post') { if (!config.isF ...
- 2020-04-17:说说redis的rdb原理。假设服务器的内存8g,redis父进程占用了6g,子进程fork父进程后,子父进程总共占用内存12g,如何解决内存不足的问题?(挖)
福哥答案2020-04-18: 这是一道挖坑题.内存占用只会比6g多一点,不会用12g.fork+cow.