考虑用动态点分治来解决像本题这样带修的树上路径问题。

首先对原树进行点分治,建出点分树,在点分树每个节点上用动态开点线段树来维护以该节点为起点,到其点分树子树中每个节点的利润。

查询时只需在点分树上当前所在节点往上跳父亲,在其到点分树根节点的链上的每个节点的线段树上查询。跳到一个节点时,在线段树上查询除了当前节点的利润最大值,同时加上其到当前节点的花费。

修改点权只需在点分树上往上跳父亲,在线段树上单点修改即可。

考虑边权的修改影响的是当前根所对应的一个子树,对于边权的修改,从其两个端点在点分树上深度更大,即点分治递归层数更深的点开始往上跳父亲,每次修改在原树上以当前节点为根,深度更浅的那个端点。

点分树上每个节点的线段树在维护时以节点的 \(dfs\) 序为下标,修改子树信息只需在线段树上区间修改即可。

\(code:\)

#include<bits/stdc++.h>
#define maxn 100010
#define maxm 200010
#define maxt 3500010
#define inf 1000000000000000
#define mid ((l+r)>>1)
#define mk make_pair
using namespace std;
typedef long long ll;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n,q,tree_cnt,dfn_cnt,tot,root,pos=1;
int fa[maxn],ma[maxn],siz[maxn],num[maxn],d[maxn];
int rt[maxn],ls[maxt],rs[maxt],in[20][maxn],out[20][maxn];
ll v[maxn],tag[maxt];
bool vis[maxn];
map<pair<int,int>,ll> w;
struct edge
{
int to,nxt;
ll v;
}e[maxm];
int head[maxn],edge_cnt;
void add(int from,int to,ll val)
{
e[++edge_cnt]=(edge){to,head[from],val};
head[from]=edge_cnt;
}
struct node
{
ll val;
int id;
}t[maxt];
bool operator <(const node &a,const node &b)
{
if(a.val==b.val) return a.id>b.id;
return a.val<b.val;
}
void pushtag(int cur,ll v)
{
t[cur].val+=v,tag[cur]=v;
}
void pushdown(int cur)
{
if(!tag[cur]) return;
pushtag(ls[cur],tag[cur]),pushtag(rs[cur],tag[cur]),tag[cur]=0;
}
void insert(int l,int r,int pos,ll v,int id,int &cur)
{
if(!cur) cur=++tree_cnt;
if(l==r)
{
t[cur]=(node){v,id};
return;
}
if(pos<=mid) insert(l,mid,pos,v,id,ls[cur]);
else insert(mid+1,r,pos,v,id,rs[cur]);
t[cur]=max(t[ls[cur]],t[rs[cur]]);
}
void modify(int L,int R,int l,int r,ll v,int &cur)
{
if(!cur) cur=++tree_cnt;
if(L<=l&&R>=r)
{
pushtag(cur,v);
return;
}
pushdown(cur);
if(L<=mid) modify(L,R,l,mid,v,ls[cur]);
if(R>mid) modify(L,R,mid+1,r,v,rs[cur]);
t[cur]=max(t[ls[cur]],t[rs[cur]]);
}
node query(int L,int R,int l,int r,int cur)
{
if(L>R||!cur) return (node){-inf,0};
if(L<=l&&R>=r) return t[cur];
pushdown(cur);
if(R<=mid) return query(L,R,l,mid,ls[cur]);
if(L>mid) return query(L,R,mid+1,r,rs[cur]);
return max(query(L,R,l,mid,ls[cur]),query(L,R,mid+1,r,rs[cur]));
}
void dfs_root(int x,int fath)
{
siz[x]=1,ma[x]=0;
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to;
if(vis[y]||y==fath) continue;
dfs_root(y,x),siz[x]+=siz[y],ma[x]=max(ma[x],siz[y]);
}
ma[x]=max(ma[x],tot-siz[x]);
if(ma[x]<ma[root]) root=x;
}
void dfs_dis(int x,int fath,ll dis,int id)
{
in[d[id]][x]=++dfn_cnt,insert(1,num[id],dfn_cnt,v[x]-dis,x,rt[id]);
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to;
if(vis[y]||y==fath) continue;
dfs_dis(y,x,dis+e[i].v,id);
}
out[d[id]][x]=dfn_cnt;
}
void solve(int x,int depth)
{
int now=tot;
d[x]=depth,vis[x]=true,num[x]=now,dfn_cnt=0,dfs_dis(x,0,0,x);
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to;
if(vis[y]) continue;
root=0,tot=siz[y];
if(siz[y]>siz[x]) tot=now-siz[x];
dfs_root(y,x),fa[root]=x,solve(root,depth+1);
}
}
int main()
{
read(n),read(q);
for(int i=1;i<=n;++i) read(v[i]);
for(int i=1;i<n;++i)
{
int x,y;
ll v;
read(x),read(y),read(v);
add(x,y,v),add(y,x,v);
if(x>y) swap(x,y);
w[mk(x,y)]=v;
}
tot=ma[0]=n,dfs_root(1,0),solve(root,1);
while(q--)
{
int opt,x,y,p;
ll val,t;
node ans=(node){-inf,0};
read(opt);
if(opt==1)
{
read(x),read(val);
for(int i=x;i;i=fa[i])
modify(in[d[i]][x],in[d[i]][x],1,num[i],val-v[x],rt[i]);
v[x]=val;
}
else
{
read(x),read(y),read(val);
if(x>y) swap(x,y);
t=w[mk(x,y)]-val,w[mk(x,y)]=val;
if(d[x]<d[y]) p=x;
else p=y;
while(p)
{
if(in[d[p]][x]>in[d[p]][y]) modify(in[d[p]][x],out[d[p]][x],1,num[p],t,rt[p]);
else modify(in[d[p]][y],out[d[p]][y],1,num[p],t,rt[p]);
p=fa[p];
}
}
for(int i=pos;i;i=fa[i])
{
node now=max(query(1,in[d[i]][pos]-1,1,num[i],rt[i]),query(in[d[i]][pos]+1,num[i],1,num[i],rt[i]));
now.val+=query(in[d[i]][pos],in[d[i]][pos],1,num[i],rt[i]).val-v[pos],ans=max(ans,now);
}
printf("%d ",pos=ans.id);
}
return 0;
}

题解 洛谷 P4695 【[PA2017]Banany】的更多相关文章

  1. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  2. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  3. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  4. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  5. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  6. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

  7. 题解-洛谷P5217 贫穷

    洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...

  8. 题解 洛谷 P2010 【回文日期】

    By:Soroak 洛谷博客 知识点:模拟+暴力枚举 思路:题目中有提到闰年然后很多人就认为,闰年是需要判断的其实,含有2月29号的回文串,前四位是一个闰年那么我们就可以直接进行暴力枚举 一些小细节: ...

  9. 题解 洛谷P2158 【[SDOI2008]仪仗队】

    本文搬自本人洛谷博客 题目 本文进行了一定的更新 优化了 Markdown 中 Latex 语句的运用,加强了可读性 补充了"我们仍不曾知晓得 消失的 性质5 ",加强了推导的严谨 ...

随机推荐

  1. Python初识类与对象

    Python初识类与对象 类与对象 世界观角度分析类与对象 类是一个抽象的概念,而对象是一个实体的存在,对象由类创造而出,每个对象之间互相独立互不影响,一个对象可以同时拥有多个类的方法,实例化就是通过 ...

  2. shiro之redis频繁访问问题

    目前安全框架shiro使用较为广泛,其功能也比较强大.为了分布式session共享,通常的做法是将session存储在redis中,实现多个节点获取同一个session.此实现可以实现session共 ...

  3. 错误C2280 Union:尝试引用已删除的函数

    在编写Union共用体类型的时候,写了如下代码,在第5行出现错误: #include <iostream> #include <string> using namespace ...

  4. MongoDB快速入门教程 (2)

    2.MongoDB的基本的CRUD操作 2.1.创建文档 在具体操作之前,想要知道有多少数据库,可以执行下面命令 show dbs 在mongodb中,数据库中包含的叫做集合(表),集合中存储的内容叫 ...

  5. jQuery制作div板块拖动层排序

    html结构: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www ...

  6. 模型评测之IoU,mAP,ROC,AUC

    IOU 在目标检测算法中,交并比Intersection-over-Union,IoU是一个流行的评测方式,是指产生的候选框candidate bound与原标记框ground truth bound ...

  7. (私人收藏)SQLite 全面手册以及教程

    SQLite 全面手册以及教程 https://pan.baidu.com/s/1VKzCWjF79fAiOLjAlx-3zwnfkp SQLite 全面手册以及教程 SQLite 简介 SQLite ...

  8. [POI2014]FAR-FarmCraft (树规+贪心)

    题干 In a village called Byteville, there are houses connected with N-1 roads. For each pair of houses ...

  9. 【学习】从.txt文件读取生成编译代码。

    string code = null; String projectName = Assembly.GetExecutingAssembly().GetName().Name; // 1. 生成要编译 ...

  10. WPF手机号码归属批量查询并导出到Excel

    工具下载地址:https://download.csdn.net/download/m0_37137902/12589801 1WPF页面xaml代码 <Window x:Class=" ...