C51算法理论上用Wasserstein度量衡量两个累积分布函数间的距离证明了价值分布的可行性,但在实际算法中用KL散度对离散支持的概率进行拟合,不能作用于累积分布函数,不能保证Bellman更新收敛;且C51算法使用价值分布的若干个固定离散支持,通过调整它们的概率来构建价值分布。

而分位数回归(quantile regression)的distributional RL对此进行了改进。首先,使用了C51的“转置”,即固定若干个离散支持的均匀概率,调整离散支持的位置;引入分位数回归的思想,近似地实现了Wasserstein距离作为损失函数。

Quantile Distribution

假设\(\mathcal{Z}_Q\)是分位数分布空间,可以将它的累积概率函数均匀分为\(N\)等分,即\(\tau_0,\tau_1...,\tau_N(\tau_i=\frac{i}{N},i=0,1,..,N)\)。使用模型\(\theta:\mathcal{S}\times \mathcal{A}\to \mathbb{R}^N\)来预测分位数分布\(Z_\theta \in \mathcal{Z}_Q\),即模型\(\{\theta_i (s,a)\}\)将状态-动作对\((s,a)\)映射到均匀概率分布上。\(Z_\theta (s,a)\)的定义如下

\[Z_\theta (s,a):=\frac{1}{N}\sum_{i=1}^N \delta_{\theta_i(s,a)} \tag{1}
\]

其中,\(\delta_z\)表示在\(z\in\mathbb{R}\)处的Dirac函数

与C51算法相比,这种做法的好处:

  1. 不再受预设定的支持限制,当回报的变化范围很大时,预测更精确
  2. 取消了C51的投影步骤,避免了一些先验知识
  3. 使用分位数回归,可以近似最小化Wassertein损失,梯度下降不再有偏

Quantile Approximation

Quantile Projection

使用1-Wassertein距离对随机价值分布\(Z\in \mathcal{Z}\)到\(\mathcal{Z}_Q\)的投影进行量化:

\[\mathcal{\Pi}_{W_1}Z:={\arg\min}_{{Z_\theta}\in\mathcal{Z}_Q}W_1(Z,Z_\theta)
\]

假设\(Z_\theta\)的支持集为\(\{\theta_1,...,\theta_N \}\),那么

\[W_1(Z,Z_\theta)=\sum_{i=1}^N \int_{\tau_{i-1}}^{\tau_i} |F_Z^{-1}(w)-\theta_i|dw
\]

其中,\(\tau_i,\tau_{i-1}\in[0,1]\)论文指出,当\(F_Z^{-1}\)是逆累积分布函数时,\(F_Z^{-1}((\tau_{i-1}+\tau_i)/2)\)最小。因此,量化中点为\(\mathcal{\hat\tau_i}=\frac{\tau_{i-1}+\tau_i}{2}(1\le i\le N)\),且最小化\(W_1\)的支持\(\theta_i=F_Z^{-1}(\mathcal{\hat\tau_i})\)。如下图

【注】C51是将回报空间(横轴)均分为若干个支持,然后求Bellman算子更新后回报落在每个支持上的概率,而分位数投影是将累积概率(纵轴)分为若干个支持(图中是4个支持),然后求出对应每个支持的回报值;图中阴影部分的面积和就是1-Wasserstein误差。

Quantile Regression

建立分位数投影后,需要去近似分布的分位数函数,需要引入分位数回归损失。对于分布\(Z\)和一个给定的分位数\(\tau\),分位数函数\(F_Z^{-1}(\tau)\)的值可以通过最小化分位数回归损失得到

\[\mathcal{L}_{\text{QR}}^\tau(\theta):=\mathbb{E}_{\hat Z\sim Z}[\rho_\tau (\hat Z -\theta)],\quad \text{where} \quad \rho_\tau (u)=u(\tau-\delta_\{u<0\}),\forall u\in\mathbb{R}
\]

最终,整体的损失函数为

\[\sum_{i=1}^N \mathbb{E}_{\hat Z\sim Z}[\rho_{\hat{\tau}_i} (\hat Z -\theta)]
\]

但是,分位数回归损失在0处不平滑。论文进一步提出了quantile Huber loss:

\[\mathcal{L}_{\mathcal{K}}(u)=
\begin{cases}
& \frac{1}{2}u^2,\quad\quad\quad\quad \text{if} |u|\le \mathcal{K} \\
& \mathcal{K}(|u|-\frac{1}{2}\mathcal{K}),\,\, \text{otherwise}
\end{cases}
\]
\[\rho_{\tau}^{\mathcal{K}}(u)=|\tau-\delta_{\{u<0\}}|\mathcal{L}_{\mathcal{K}}(u)
\]

Implement

QR TD-Learning

QRTD算法(quantile regression temporal difference learning algorithm)的更新

\[\theta_i(s)\leftarrow \theta_i(s)+\alpha (\hat{\mathcal{\tau}}_i-\delta_{\{r+\gamma z^\prime < \theta_i (s) \}})
\]

\(a\sim\pi (\cdot|s),r\sim R(s,a),s^\prime\sim P(\cdot|s,a),z^\prime\sim Z_\theta(s^\prime)\)

其中,\(Z_\theta\)是由公式(1)给出的分位数分布,\(\theta_i (s)\)是状态\(s\)下\(F_{Z^\pi (s)}^{-1}(\mathcal{\hat \tau}_i)\)的估计值。

QR-DQN

QR-DQN算法伪代码

Append

1. Dirac Delta Function

\[\delta_a (x)=\delta (x-a)=0,(x\neq 0) \quad且\quad \int_{-\infty}^\infty \delta_a (x)d_x=1
\]

References

Will Dabney, Mark Rowland, Marc G. Bellemare, Rémi Munos. Distributional Reinforcement Learning with Quantile Regression. 2017.

Distributional RL

3. Distributional Reinforcement Learning with Quantile Regression的更多相关文章

  1. Distributional Reinforcement Learning with Quantile Regression

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1710.10044v1 [cs.AI] 27 Oct 2017 In AAAI Conference on Artifici ...

  2. Statistics and Samples in Distributional Reinforcement Learning

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1902.08102v1 [stat.ML] 21 Feb 2019 Abstract 我们通过递归估计回报分布的统计量,提供 ...

  3. 2. A Distributional Perspective on Reinforcement Learning

    本文主要研究了分布式强化学习,利用价值分布(value distribution)的思想,求出回报\(Z\)的概率分布,从而取代期望值(即\(Q\)值). Q-Learning Q-Learning的 ...

  4. [转]Introduction to Learning to Trade with Reinforcement Learning

    Introduction to Learning to Trade with Reinforcement Learning http://www.wildml.com/2018/02/introduc ...

  5. Introduction to Learning to Trade with Reinforcement Learning

    http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/ The academic ...

  6. Rainbow: Combining Improvements in Deep Reinforcement Learning

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1710.02298v1 [cs.AI] 6 Oct 2017 (AAAI 2018) Abstract 深度强化学习社区对D ...

  7. Machine Learning Algorithms Study Notes(5)—Reinforcement Learning

    Reinforcement Learning 对于控制决策问题的解决思路:设计一个回报函数(reward function),如果learning agent(如上面的四足机器人.象棋AI程序)在决定 ...

  8. (转) Playing FPS games with deep reinforcement learning

    Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing- ...

  9. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

随机推荐

  1. nginx的安装和启动

    https://www.cnblogs.com/wyd168/p/6636529.html nginx开机启动 https://www.cnblogs.com/gimin/p/8893559.html

  2. netty之pipeline

    转载自https://blog.csdn.net/zxhoo/article/details/17264263 Netty4学习笔记(1)-- ChannelPipeline Netty4Netty是 ...

  3. 疑难杂症 | Excel VBA锁定指定单元格区域

    背景:锁定EXCEL表头 一.手动操作流程 其基本逻辑并不赋值,手动操作流程是: 1.取消所有单元格的"锁定"格式 CTRL+A,选中全部的单元格→单击右键→设置单元格格式→保护→ ...

  4. 趣图:大佬如何解决bug的

    Bug 变 Feature, 这招简直太帅了!   扩展阅读 趣图:我说自己菜 vs 大佬说自己菜 趣图:公司实习生找 Bug 趣图:国内一些大平台的推荐算法 趣图:开发和测试是如何对待代码的 趣图: ...

  5. Hive 窗口函数sum() over()求当前行和前面n条数据的和

    前几天遇到一个这样的需求:销售总占比加起来超过75%的top分类.具体需求是这样的:商品一级分类标签下面有许多商品标签,例如运动户外一级标签,下面可能存在361°,CBA,Nike,Adidas... ...

  6. 《Netty权威指南》笔记

    第1章 Java的I/O演进之路 1.1 Linux网络I/O模型 fd:file descriptor,文件描述符.linux内核将所有外部设备都看作一个文件来操作,对文件的读写会调用内核提供的命令 ...

  7. Metasploit之漏洞利用( Metasploitable2)

    每个操作系统都会存在各种Bug,像Windows这样有版权的操作系统,微软公司会快速地开发针对这些Bug或漏洞的补丁,并为用户提供更新.全世界有大量的漏洞研究人员会夜以继日地发现.研究新的Bug,这些 ...

  8. Kafka消费与心跳机制

    1.概述 最近有同学咨询Kafka的消费和心跳机制,今天笔者将通过这篇博客来逐一介绍这些内容. 2.内容 2.1 Kafka消费 首先,我们来看看消费.Kafka提供了非常简单的消费API,使用者只需 ...

  9. python3-day5

    模块,用一砣代码实现了某个功能的代码集合. 类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合.而对于一个复杂的功能来,可能需要多个函数才 ...

  10. 对offsetof、 container_of宏和结构体的理解

    offsetof 宏 #include<stdio.h> #define offsetoff(type, member)      ((int)&((type*)0)->me ...