C51算法理论上用Wasserstein度量衡量两个累积分布函数间的距离证明了价值分布的可行性,但在实际算法中用KL散度对离散支持的概率进行拟合,不能作用于累积分布函数,不能保证Bellman更新收敛;且C51算法使用价值分布的若干个固定离散支持,通过调整它们的概率来构建价值分布。

而分位数回归(quantile regression)的distributional RL对此进行了改进。首先,使用了C51的“转置”,即固定若干个离散支持的均匀概率,调整离散支持的位置;引入分位数回归的思想,近似地实现了Wasserstein距离作为损失函数。

Quantile Distribution

假设\(\mathcal{Z}_Q\)是分位数分布空间,可以将它的累积概率函数均匀分为\(N\)等分,即\(\tau_0,\tau_1...,\tau_N(\tau_i=\frac{i}{N},i=0,1,..,N)\)。使用模型\(\theta:\mathcal{S}\times \mathcal{A}\to \mathbb{R}^N\)来预测分位数分布\(Z_\theta \in \mathcal{Z}_Q\),即模型\(\{\theta_i (s,a)\}\)将状态-动作对\((s,a)\)映射到均匀概率分布上。\(Z_\theta (s,a)\)的定义如下

\[Z_\theta (s,a):=\frac{1}{N}\sum_{i=1}^N \delta_{\theta_i(s,a)} \tag{1}
\]

其中,\(\delta_z\)表示在\(z\in\mathbb{R}\)处的Dirac函数

与C51算法相比,这种做法的好处:

  1. 不再受预设定的支持限制,当回报的变化范围很大时,预测更精确
  2. 取消了C51的投影步骤,避免了一些先验知识
  3. 使用分位数回归,可以近似最小化Wassertein损失,梯度下降不再有偏

Quantile Approximation

Quantile Projection

使用1-Wassertein距离对随机价值分布\(Z\in \mathcal{Z}\)到\(\mathcal{Z}_Q\)的投影进行量化:

\[\mathcal{\Pi}_{W_1}Z:={\arg\min}_{{Z_\theta}\in\mathcal{Z}_Q}W_1(Z,Z_\theta)
\]

假设\(Z_\theta\)的支持集为\(\{\theta_1,...,\theta_N \}\),那么

\[W_1(Z,Z_\theta)=\sum_{i=1}^N \int_{\tau_{i-1}}^{\tau_i} |F_Z^{-1}(w)-\theta_i|dw
\]

其中,\(\tau_i,\tau_{i-1}\in[0,1]\)论文指出,当\(F_Z^{-1}\)是逆累积分布函数时,\(F_Z^{-1}((\tau_{i-1}+\tau_i)/2)\)最小。因此,量化中点为\(\mathcal{\hat\tau_i}=\frac{\tau_{i-1}+\tau_i}{2}(1\le i\le N)\),且最小化\(W_1\)的支持\(\theta_i=F_Z^{-1}(\mathcal{\hat\tau_i})\)。如下图

【注】C51是将回报空间(横轴)均分为若干个支持,然后求Bellman算子更新后回报落在每个支持上的概率,而分位数投影是将累积概率(纵轴)分为若干个支持(图中是4个支持),然后求出对应每个支持的回报值;图中阴影部分的面积和就是1-Wasserstein误差。

Quantile Regression

建立分位数投影后,需要去近似分布的分位数函数,需要引入分位数回归损失。对于分布\(Z\)和一个给定的分位数\(\tau\),分位数函数\(F_Z^{-1}(\tau)\)的值可以通过最小化分位数回归损失得到

\[\mathcal{L}_{\text{QR}}^\tau(\theta):=\mathbb{E}_{\hat Z\sim Z}[\rho_\tau (\hat Z -\theta)],\quad \text{where} \quad \rho_\tau (u)=u(\tau-\delta_\{u<0\}),\forall u\in\mathbb{R}
\]

最终,整体的损失函数为

\[\sum_{i=1}^N \mathbb{E}_{\hat Z\sim Z}[\rho_{\hat{\tau}_i} (\hat Z -\theta)]
\]

但是,分位数回归损失在0处不平滑。论文进一步提出了quantile Huber loss:

\[\mathcal{L}_{\mathcal{K}}(u)=
\begin{cases}
& \frac{1}{2}u^2,\quad\quad\quad\quad \text{if} |u|\le \mathcal{K} \\
& \mathcal{K}(|u|-\frac{1}{2}\mathcal{K}),\,\, \text{otherwise}
\end{cases}
\]
\[\rho_{\tau}^{\mathcal{K}}(u)=|\tau-\delta_{\{u<0\}}|\mathcal{L}_{\mathcal{K}}(u)
\]

Implement

QR TD-Learning

QRTD算法(quantile regression temporal difference learning algorithm)的更新

\[\theta_i(s)\leftarrow \theta_i(s)+\alpha (\hat{\mathcal{\tau}}_i-\delta_{\{r+\gamma z^\prime < \theta_i (s) \}})
\]

\(a\sim\pi (\cdot|s),r\sim R(s,a),s^\prime\sim P(\cdot|s,a),z^\prime\sim Z_\theta(s^\prime)\)

其中,\(Z_\theta\)是由公式(1)给出的分位数分布,\(\theta_i (s)\)是状态\(s\)下\(F_{Z^\pi (s)}^{-1}(\mathcal{\hat \tau}_i)\)的估计值。

QR-DQN

QR-DQN算法伪代码

Append

1. Dirac Delta Function

\[\delta_a (x)=\delta (x-a)=0,(x\neq 0) \quad且\quad \int_{-\infty}^\infty \delta_a (x)d_x=1
\]

References

Will Dabney, Mark Rowland, Marc G. Bellemare, Rémi Munos. Distributional Reinforcement Learning with Quantile Regression. 2017.

Distributional RL

3. Distributional Reinforcement Learning with Quantile Regression的更多相关文章

  1. Distributional Reinforcement Learning with Quantile Regression

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1710.10044v1 [cs.AI] 27 Oct 2017 In AAAI Conference on Artifici ...

  2. Statistics and Samples in Distributional Reinforcement Learning

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1902.08102v1 [stat.ML] 21 Feb 2019 Abstract 我们通过递归估计回报分布的统计量,提供 ...

  3. 2. A Distributional Perspective on Reinforcement Learning

    本文主要研究了分布式强化学习,利用价值分布(value distribution)的思想,求出回报\(Z\)的概率分布,从而取代期望值(即\(Q\)值). Q-Learning Q-Learning的 ...

  4. [转]Introduction to Learning to Trade with Reinforcement Learning

    Introduction to Learning to Trade with Reinforcement Learning http://www.wildml.com/2018/02/introduc ...

  5. Introduction to Learning to Trade with Reinforcement Learning

    http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/ The academic ...

  6. Rainbow: Combining Improvements in Deep Reinforcement Learning

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1710.02298v1 [cs.AI] 6 Oct 2017 (AAAI 2018) Abstract 深度强化学习社区对D ...

  7. Machine Learning Algorithms Study Notes(5)—Reinforcement Learning

    Reinforcement Learning 对于控制决策问题的解决思路:设计一个回报函数(reward function),如果learning agent(如上面的四足机器人.象棋AI程序)在决定 ...

  8. (转) Playing FPS games with deep reinforcement learning

    Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing- ...

  9. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

随机推荐

  1. MyBatis学习(四)代码生成器MyBatis-Generator

    一.简介 前面写过一篇文章介绍了如何使用Mybatis,那么如果我门数据库中有许许多多的表的时候,每张表都手动去写对应的mapper的映射关系,会非常麻烦,那么我们可以使用代码生成器MyBatis-G ...

  2. [HarekazeCTF2019]Avatar Uploader 1 &&

    [HarekazeCTF2019]Avatar Uploader 1 这是一个文件上传的题目,但是这导体是通过满足条件来获取flag的. 他有两个函数,一个是getimagesize,还有一个是FIL ...

  3. 手撸Mysql原生语句--单表

    select from where group by having order by limit 上面的所有操作是有执行的优先级的顺序的,我们将执行的过程可以总结为下面所示的七个步骤. 1.找到表:f ...

  4. 文本编辑-vi

    命令行模式: 底行模式:

  5. springboot集成swagger文档

    //此处省略springboot创建过程 1.引入swagger相关依赖(2个依赖必须版本相同) <dependency> <groupId>io.springfox</ ...

  6. Servlet3.x部署描述符

    简介 web.xml即部署描述符,位于WEB-INF目录下.在Servlet3以上版本有提供了注解的方式部署Servlet,因此web.xml是可选的.web.xml大概框架如下: <?xml ...

  7. 029 01 Android 零基础入门 01 Java基础语法 03 Java运算符 09 逻辑“非”运算符

    029 01 Android 零基础入门 01 Java基础语法 03 Java运算符 09 逻辑"非"运算符 本文知识点:Java中的逻辑"非"运算符 逻辑& ...

  8. P1527 [国家集训队]矩阵乘法(整体二分)

    Link 整体二分的经典例题. 对于整体二分,我个人的理解是二分答案套分治. 具体来说就是对答案进行二分,然后对于询问进行类似于权值线段树求区间第 \(k\) 大的分治做法. 首先,我们暴力做法就是对 ...

  9. 在uniapp或者vue中单行文字或者符号无法换行的终极解决方案

    在VUE开发过程中,会出现比较诡异的情况. 比如常规的英文或中文显示都是很正常的,但是当出现了一些中文符号(比如,!等等)在文末的时候,总是会超出view的显示区域. 那么在遇到上面这种问题我们记得检 ...

  10. Thinkphp中D方法和M方法的区别

    两者共同点都是实例化模型的,而两者不同点呢?一起来看一下: $User = D('User');括号中的参数User,对应的模型类文件的 \Home\Model\UserModel.class.php ...