思路:将每一行看做一个二进制位,那么所有的合法状态为相邻为1的个数一定要为偶数个。这样就可以先把所有的合法状态找到。由于没一层的合法状态都是一样的,那么可以用一个数组保存。由第i-1行到第i行的状态转移是dp[i][now|num[j]]+=dp[i-1][k],其中now为(1<<m)-1-k;也就是把k中含有0的变1,1边0。k为第i-1行的所有二进制状态,转移条件是k&num[j]==num[j]。唯一注意的是,最后一行的条件是k^num[j]==0.

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define Maxn 13
#define inf 0x7fffffff
using namespace std;
__int64 dp[Maxn][<<Maxn];
int num[<<Maxn],cnt1,cnt2,graphic[Maxn],co,n,m;
void dfs(int j,int f)
{
int i;
if(j==m)
{
int sum=;
if(f)
graphic[j]=;
else
graphic[j]=;
for(i=m;i>=;i--)
sum+=graphic[i]*(<<(m-i));
num[++cnt2]=sum;
return ;
}
if(!f)
{
graphic[j]=;
dfs(j+,);
graphic[j]=;
dfs(j+,);
}
else
{
graphic[j]=;
dfs(j+,);
}
}
int main()
{
int i,j,k;
while(scanf("%d%d",&n,&m)!=EOF,n||m)
{
if((n*m)%)
{
printf("0\n");
continue;
}
if(n==)
{
printf("1\n");
continue;
}
memset(dp,,sizeof(dp));
graphic[]=;
cnt2=;
dfs(,);
for(i=;i<=cnt2;i++)
dp[][num[i]]=;
int temp=<<m;
temp--;
for(i=;i<=n-;i++)
{
for(j=;j<=cnt2;j++)
{
for(k=;k<=temp;k++)
{
if((k&num[j])==num[j])
{
int now=temp-k;
dp[i][now|num[j]]+=dp[i-][k];
}
}
}
}
__int64 ans=;
for(j=;j<=cnt2;j++)
{
for(k=;k<=temp;k++)
{
if((k^num[j])==)
ans+=dp[i-][k];
}
}
printf("%I64d\n",ans);
}
return ;
}

poj 2411 状态压缩dp的更多相关文章

  1. Mondriaan's Dream(POJ 2411状态压缩dp)

    题意:用1*2的方格填充m*n的方格不能重叠,问有多少种填充方法 分析:dp[i][j]表示i行状态为j时的方案数,对于j,0表示该列竖放(影响下一行的该列),1表示横放成功(影响下一列)或上一列竖放 ...

  2. POJ 1185 状态压缩DP(转)

    1. 为何状态压缩: 棋盘规模为n*m,且m≤10,如果用一个int表示一行上棋子的状态,足以表示m≤10所要求的范围.故想到用int s[num].至于开多大的数组,可以自己用DFS搜索试试看:也可 ...

  3. POJ 1185 状态压缩DP 炮兵阵地

    题目直达车:   POJ 1185 炮兵阵地 分析: 列( <=10 )的数据比较小, 一般会想到状压DP. Ⅰ.如果一行10全个‘P’,满足题意的状态不超过60种(可手动枚举). Ⅱ.用DFS ...

  4. poj 2923(状态压缩dp)

    题意:就是给了你一些货物的重量,然后给了两辆车一次的载重,让你求出最少的运输次数. 分析:首先要从一辆车入手,搜出所有的一次能够运的所有状态,然后把两辆车的状态进行合并,最后就是解决了,有两种方法: ...

  5. poj 2688 状态压缩dp解tsp

    题意: 裸的tsp. 分析: 用bfs求出随意两点之间的距离后能够暴搜也能够用next_permutation水,但效率肯定不如状压dp.dp[s][u]表示从0出发訪问过s集合中的点.眼下在点u走过 ...

  6. poj 3254 状态压缩DP

    思路:把每行的数当做是一个二进制串,0不变,1变或不变,找出所有的合法二进制形式表示的整数,即相邻不同为1,那么第i-1行与第i行的状态转移方程为dp[i][j]+=dp[i-1][k]: 这个方程得 ...

  7. POJ 2411 状态压缩递,覆盖方案数

    无非就是横着放与竖着放,状态中用1表示覆盖,0表示未覆盖. #include <iostream> #include <vector> #include <algorit ...

  8. POJ 3254 状态压缩 DP

    B - Corn Fields Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:65536KB    ...

  9. POJ 3691 (AC自动机+状态压缩DP)

    题目链接:  http://poj.org/problem?id=3691 题目大意:给定N个致病DNA片段以及一个最终DNA片段.问最终DNA片段最少修改多少个字符,使得不包含任一致病DNA. 解题 ...

随机推荐

  1. python 操作 excel

    python操作execel主要是读写 读 通过 http://pypi.python.org/pypi/xlrd 写 通过 http://pypi.python.org/pypi/xlwd 下载ta ...

  2. iOS学习之自动布局

    Autolayout: 最重要的两个概念: 约束:对控件位置和大小的限定条件 参照:对控件设置的约束是相对于哪一个视图而言的 自动布局的核心计算公式: obj1.property1 =(obj2.pr ...

  3. FZU 2082 过路费 (树链剖分 修改单边权)

    题目链接:http://acm.fzu.edu.cn/problem.php?pid=2082 树链剖分模版题,求和,修改单边权. #include <iostream> #include ...

  4. UOJ Test Round #2

    昨天晚上打的这个比赛,简直一颗赛艇啊-- 感觉发挥的并不好.比赛的时候比较紧张,最后一题还脑残写了个离散化结果爆零了,哎我怎么这么逗逼-- 讲讲比赛经过吧. 比赛之前逗逼地以为是8:00开始,然后淡定 ...

  5. 开源的读取Excel文件组件-ExcelDataReader

    ExcelDataReader可以读取 Microsoft Excel 文件 ('97-2007),支持Windows  .Net Framework 2 +. Windows Mobile with ...

  6. OpenNebula 创建虚拟机失败(未解决)

    Tue Jul :: [ReM][D]: Req: UID: AclInfo invoked Tue Jul :: [ReM][D]: Req: UID: AclInfo result SUCCESS ...

  7. MATLAB新手教程

    MATLAB新手教程   .MATLAB的基本知识 1-1.基本运算与函数    在MATLAB下进行基本数学运算,仅仅需将运算式直接打入提示号(>>)之後,并按入Enter键就可以.比如 ...

  8. Android 监听屏幕锁屏,用户解锁

    在做一个程序的时候,需要时刻保持某一服务是启动的,因此想到了通过监听屏幕SCREEN_ON和SCREEN_OFF这两个action.奇怪的是,这两个action只能通过代码的形式注册,才能被监听到,使 ...

  9. 自己写一个jQuery垂直滚动栏插件(panel)

    html中原生的滚动栏比較难看,所以有些站点,会自己实现滚动栏,导航站点hao123在一个側栏中,就自己定义了垂直滚动栏,效果比較好看,截图例如以下: watermark/2/text/aHR0cDo ...

  10. inux2.6.xx内核代码分析( 72节)

    http://blog.csdn.net/ustc_dylan/article/category/469214