City Driving

题目连接:

http://codeforces.com/gym/100015/attachments

Description

You recently started frequenting San Francisco in your free time and realized that driving in the city is a

huge pain. There are only N locations in the city that interest you, though, and you have decidedtotry

to improve your driving experience. Since you lack a GPS and cannot remember too many di!erent routes,

you wrote down the directions and how long it takes to get between N di!erent pairs of locations (the same

in both directions), ensuring that using only these paths you can get from any location to any other one.

Now you are planning your trip for the weekend and you need to figureoutthefastestwaytogetbetween

Q pairs of locations in the city using only the routes you have written down.

Input

The input consists of multiple test cases. The first line contains a single integer N,3 ! N ! 100,000, the

number of locations of interest and the number of routes you wrotedown.Thenext N lines each contain

three integers u, v,and w (1 ! w ! 1,000), indicating that you have directions from location u to location v

and vice-versa (0-indexed) which take w time. The following line contains a single integer Q,1 ! Q ! 10,000,

the number of pairs of locations you need to compute the travel timefor. Thenext Q lines each contain

two integers u and v, indicating that you should find the minimum time to get from location u to location

v. The input terminates with a line with N = 0. For example:

Output

For each test case, print out Q lines, one for each pair of locations u and v you are finding the fastest routes

for. Each line should simply contain the minimum time it takes to travel from location u to location v.For

example, the correct output for the sample input above would be:

Sample Input

7

0 1 2

0 2 3

1 3 2

2 3 8

2 4 3

3 5 1

1 6 7

3

4 5

0 6

1 2

0

Sample Output

11

9

5

Hint

题意

给你一个n环n边的图,问你两点之间的最短路

题解:

随便找一个环,然后在这个环上随便去掉一条边,然后就比较这个树上的距离小,还是经过这条边的饿距离小

比如你去掉的边是a,b,边权是w,你查询u,v

那么你比较dis(u,v),dis(u,a)+w+dis(b,v),dis(u,b)+w+dis(a,u)就好了

找环上的边,我推荐用并查集

代码

#include<bits/stdc++.h>
using namespace std;
#define maxn 100005
struct node
{
int x,y;
};
vector<node>G[maxn];
int dp[18][maxn*2],dis[maxn],parent[maxn],vis[maxn],pos[maxn],res[maxn];
int n,m,c,num,cnt,si;
int qx=0,qy=0,qv=0;
void init()
{
qx = qy = qv = 0;
cnt = num = si = 0;
memset(dp,0,sizeof(dp));
memset(dis,0,sizeof(dis));
memset(vis,0,sizeof(vis));
memset(res,0,sizeof(res));
memset(pos,0,sizeof(pos));
for(int i=0;i<maxn;i++)
G[i].clear();
}
int Find(int i)
{
if(i!=parent[i])
parent[i]=Find(parent[i]);
return parent[i];
}
void Union(int i,int j)
{
int x,y;
x=Find(i);
y=Find(j);
if(x!=y)
parent[x]=y;
} void dfs3(int u,int dist)
{
int i,j;
vis[u]=1;
dis[u]=dist;
pos[u]=cnt;
res[si]=u;
dp[0][cnt++]=si++;
for(i=0;i<G[u].size();i++)
{
j=G[u][i].x;
if(!vis[j])
{
dfs3(j,dist+G[u][i].y);
dp[0][cnt++]=dp[0][pos[u]];
}
}
}
void rmq()
{
int i,j,k;
for(i=1;(1<<i)<=n;i++)
for(j=n-1;j>=0;j--)
{
k=(1<<(i-1));
dp[i][j]=dp[i-1][j];
if(k+j<n)
dp[i][j]=min(dp[i][j],dp[i-1][j+k]);
}
}
int cal(int i,int j)
{
int k;
if(i<j)swap(i,j);
k=0;
while((1<<k)<=(i-j+1))
k++;
k--;
k=min(dp[k][j],dp[k][i-(1<<k)+1]);
return res[k];
}
int Dis(int u,int v)
{
int k = cal(pos[u],pos[v]);
return dis[u]+dis[v]-dis[k]*2;
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
if(n==0)break;
init();
for(int i=0;i<=n;i++)
parent[i]=i;
for(int i=1;i<=n;i++)
{
int x,y,z;scanf("%d%d%d",&x,&y,&z);
x++,y++;
int p = Find(x),q = Find(y);
if(p==q){
qx = x,qy = y,qv = z;
continue;
}
Union(x,y);
G[x].push_back((node){y,z});
G[y].push_back((node){x,z});
}
for(int i=1;i<=n;i++)
if(!vis[i])
dfs3(i,0);
n=n*2-1;
rmq();
int q;
scanf("%d",&q);
while(q--)
{
int x,y;scanf("%d%d",&x,&y);
x++,y++;
int res = Dis(x,y);
res = min(res,Dis(x,qx)+Dis(y,qy)+qv);
res = min(res,Dis(x,qy)+Dis(y,qx)+qv);
printf("%d\n",res);
}
}
}

Codeforces Gym 100015C City Driving 离线LCA的更多相关文章

  1. Codeforces Gym 100114 H. Milestones 离线树状数组

    H. Milestones Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100114 Descripti ...

  2. codeforces gym #101161E - ACM Tax(lca+主席树)

    题目链接: http://codeforces.com/gym/101161/attachments 题意: 给出节点数为$n$的树 有$q$次询问,输出$a$节点到$b$节点路程中,经过的边的中位数 ...

  3. Codeforces Gym 100650B Countdown (离线)

    题目链接:http://codeforces.com/gym/100650 根据给出的树和d,求出一些结点,这些结点形成子树的第d层结点数应该尽量多,具体要求可以参考题目. dfs一个结点前保存询问深 ...

  4. Codeforces Gym 101190M Mole Tunnels - 费用流

    题目传送门 传送门 题目大意 $m$只鼹鼠有$n$个巢穴,$n - 1$条长度为$1$的通道将它们连通且第$i(i > 1)$个巢穴与第$\left\lfloor \frac{i}{2}\rig ...

  5. HDU 5044 离线LCA算法

    昨天写了HDU 3966 ,本来这道题是很好解得,结果我想用离线LCA 耍一把,结果发现离线LCA 没理解透,错了好多遍,终得AC ,这题比起 HDU 3966要简单,因为他不用动态查询.但是我还是错 ...

  6. Codeforces Gym 101252D&&floyd判圈算法学习笔记

    一句话题意:x0=1,xi+1=(Axi+xi%B)%C,如果x序列中存在最早的两个相同的元素,输出第二次出现的位置,若在2e7内无解则输出-1. 题解:都不到100天就AFO了才来学这floyd判圈 ...

  7. Codeforces Gym 101623A - 动态规划

    题目传送门 传送门 题目大意 给定一个长度为$n$的序列,要求划分成最少的段数,然后将这些段排序使得新序列单调不减. 考虑将相邻的相等的数缩成一个数. 假设没有分成了$n$段,考虑最少能够减少多少划分 ...

  8. 【Codeforces Gym 100725K】Key Insertion

    Codeforces Gym 100725K 题意:给定一个初始全0的序列,然后给\(n\)个查询,每一次调用\(Insert(L_i,i)\),其中\(Insert(L,K)\)表示在第L位插入K, ...

  9. Codeforces gym 101343 J.Husam and the Broken Present 2【状压dp】

     2017 JUST Programming Contest 2.0 题目链接:Codeforces gym 101343 J.Husam and the Broken Present 2 J. Hu ...

随机推荐

  1. 用Delphi实现文件关联

      文件关联为我们带来很多的方便.Delphi自带有注册表对象TRegistry,可以通过它取得或改变注册表相关键值的内容. Function GetAssociatedExec(FileExt: S ...

  2. 将war包布署在本地tomcat上

    1.把war包解压到..webapps目录下 2. 修改server.xml文件,在host节点中添加 <Context docBase="C:\Users\bai\Desktop\s ...

  3. 指针数组  数组指针的区别.xml

    pre{ line-height:1; color:#1e1e1e; background-color:#f0f0f0; font-size:16px;}.sysFunc{color:#627cf6; ...

  4. JS代码的简单重构与优化

    JS代码的简单重构与优化(适合新手) 原文  http://www.cnblogs.com/similar/p/5016424.html Demo . 1 //bad if (age > 20) ...

  5. nagios高可用性设置

    1. 前言 如何来实现nagios监控系统的高可用,监控是很重要的,在关键时刻进行通知报警,通知人员进行相应的处理. 在进行配置的时候,需要配置两台相同服务的nagios服务器,配置相同,同时在运行, ...

  6. JQuery中的事件以及动画

    .bind事件 <script src="script/jquery-1.7.1.min.js"></script> <script> $(fu ...

  7. 事务处理: databse jdbc mybatis spring

    事务的认识需要一个相当漫长的流程,慢慢在实践中理解,然后在强化相关理论基础. 数据库中的事务: 传统的本地事务处理都是依靠数据库自身事务处理能力,而事务本身是传统关系型数据库的基石.简单来说事务就是一 ...

  8. Shell script之if...then

    1 Variable in shell  If you want to print variable, then use echo command. In front of the variable ...

  9. CentOS 5.5 快速安装MariaDB-5.5.35

    被网上各种教程坑的不轻T,T,5.5下不升级yum的情况下想快速安装还真有点费劲 至于源码编译安装坑貌似更多 而且在小内存的VPS上编译实在费力 下载地址 http://yum.mariadb.org ...

  10. 深入理解HBase Memstore

    2013/08/09 转发自http://www.cnblogs.com/shitouer/archive/2013/02/05/configuring-hbase-memstore-what-you ...