题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4687

  题意:给一个无向图,求所有的最大匹配的情况所不包含的边。。

  数据比较小,直接枚举边。先求一次最大匹配hig,然后依次枚举所有边,假设此边为一个匹配,那么删掉边的两个节点,然后再剩下的图中求最大匹配t,如果t<hig-1那么就是不包含的边了。关于一般图上的最大匹配算法,O(n^3)的Edmonds's matching algorithm,理解起来比较容易,但是写起来比较麻烦,收集了一个模板,by Amber。。。

 //STATUS:C++_AC_46MS_236KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
//#include <map>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,102400000")
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef __int64 LL;
typedef unsigned __int64 ULL;
//const
const int N=;
const int INF=0x3f3f3f3f;
const int MOD=,STA=;
const LL LNF=1LL<<;
const double EPS=1e-;
const double OO=1e15;
const int dx[]={-,,,};
const int dy[]={,,,-};
const int day[]={,,,,,,,,,,,,};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End int a,b;
int n,m;
int head,tail,Start,Finish;
int link[N]; //表示哪个点匹配了哪个点
int Father[N]; //这个就是增广路的Father……但是用起来太精髓了
int Base[N]; //该点属于哪朵花
int Q[N];
bool mark[N];
bool map[N][N];
bool InBlossom[N];
bool in_Queue[N]; void BlossomContract(int x,int y)
{
fill(mark,mark+n+,false);
fill(InBlossom,InBlossom+n+,false);
#define pre Father[link[i]]
int lca,i;
for (i=x;i;i=pre) {i=Base[i]; mark[i]=true; }
for (i=y;i;i=pre) {i=Base[i]; if (mark[i]) {lca=i; break;} } //寻找lca之旅……一定要注意i=Base[i]
for (i=x;Base[i]!=lca;i=pre){
if (Base[pre]!=lca) Father[pre]=link[i]; //对于BFS树中的父边是匹配边的点,Father向后跳
InBlossom[Base[i]]=true;
InBlossom[Base[link[i]]]=true;
}
for (i=y;Base[i]!=lca;i=pre){
if (Base[pre]!=lca) Father[pre]=link[i]; //同理
InBlossom[Base[i]]=true;
InBlossom[Base[link[i]]]=true;
}
#undef pre
if (Base[x]!=lca) Father[x]=y; //注意不能从lca这个奇环的关键点跳回来
if (Base[y]!=lca) Father[y]=x;
for (i=;i<=n;i++){
if(i==a || i==b)continue;
if (InBlossom[Base[i]]){
Base[i]=lca;
if (!in_Queue[i]){
Q[++tail]=i;
in_Queue[i]=true; //要注意如果本来连向BFS树中父结点的边是非匹配边的点,可能是没有入队的
}
}
}
} void Change()
{
int x,y,z;
z=Finish;
while (z){
y=Father[z];
x=link[y];
link[y]=z;
link[z]=y;
z=x;
}
} void FindAugmentPath()
{
fill(Father,Father+n+,);
fill(in_Queue,in_Queue+n+,false);
for (int i=;i<=n;i++) Base[i]=i; //Init属于同一花朵
head=; tail=;
Q[]=Start; //当前节点进入队列
in_Queue[Start]=;
while (head!=tail){
int x=Q[++head];
for (int y=;y<=n;y++){
if(y==a || y==b)continue;
if (map[x][y] && Base[x]!=Base[y] && link[x]!=y){ //无意义的边
if ( Start==y || link[y] && Father[link[y]] ) //精髓地用Father表示该点是否
BlossomContract(x,y);
else if (!Father[y]){
Father[y]=x;
if (link[y]){
Q[++tail]=link[y];
in_Queue[link[y]]=true;
}
else{
Finish=y;
Change();
return;
}
}
}
}
}
} int Edmonds()
{
int i,cnt=;
memset(link,,sizeof(link));
memset(Father,,sizeof(Father));
for (Start=;Start<=n;Start++){
if(Start==a || Start==b)continue;
if (link[Start]==)
FindAugmentPath(); //如果点没有匹配,那么找BFS增广路
} for(i=;i<=n;i++)
if(link[i])cnt++;
return cnt;
} int e[][],ans[]; int main(){
// freopen("in.txt","r",stdin);
int i,j,hig,cnt;
while(~scanf("%d%d",&n,&m))
{
mem(map,);
for(i=;i<m;i++){
scanf("%d%d",&e[i][],&e[i][]);
map[e[i][]][e[i][]]=map[e[i][]][e[i][]]=true;
} a=b=-;
hig=Edmonds();
cnt=;
for(i=;i<m;i++){
a=e[i][],b=e[i][];
int t=Edmonds();
if(t<hig-)ans[cnt++]=i+;
} printf("%d\n",cnt);
if(cnt){
printf("%d",ans[]);
for(i=;i<cnt;i++)
printf(" %d",ans[i]);
}
putchar('\n');
}
return ;
}

HDU-4687 Boke and Tsukkomi 带花树,枚举的更多相关文章

  1. HDU 4687 Boke and Tsukkomi (一般图匹配带花树)

    Boke and Tsukkomi Time Limit: 3000/3000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Othe ...

  2. HDU 4687 Boke and Tsukkomi 一般图匹配,带花树,思路,输出注意空行 难度:4

    http://acm.hdu.edu.cn/showproblem.php?pid=4687 此题求哪些边在任何一般图极大匹配中都无用,对于任意一条边i,设i的两个端点分别为si,ti, 则任意一个极 ...

  3. HDU 4687 Boke and Tsukkomi (一般图最大匹配)【带花树】

    <题目链接> 题目大意: 给你n个点和m条边,每条边代表两点具有匹配关系,问你有多少对匹配是冗余的. 解题分析: 所谓不冗余,自然就是这对匹配关系处于最大匹配中,即该匹配关系有意义.那怎样 ...

  4. hdu 4687 Boke and Tsukkomi

    Dancing link twice. Find the maximum combination numbers in the first time. Enumerate each node, dan ...

  5. HDOJ 4687 Boke and Tsukkomi 一般图最大匹配带花树+暴力

    一般图最大匹配带花树+暴力: 先算最大匹配 C1 在枚举每一条边,去掉和这条边两个端点有关的边.....再跑Edmonds得到匹配C2 假设C2+2==C1则这条边再某个最大匹配中 Boke and ...

  6. kuangbin带你飞 匹配问题 二分匹配 + 二分图多重匹配 + 二分图最大权匹配 + 一般图匹配带花树

    二分匹配:二分图的一些性质 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j ...

  7. Hdu4687 Boke and Tsukkomi

    Boke and Tsukkomi                                                                               Time ...

  8. 【Learning】带花树——一般图最大匹配

    一般图最大匹配--带花树 问题 ​ 给定一个图,求该图的最大匹配.即找到最多的边,使得每个点至多属于一条边. ​ 这个问题的退化版本就是二分图最大匹配. ​ 由于二分图中不存在奇环,偶环对最大匹配并无 ...

  9. [转]带花树,Edmonds's matching algorithm,一般图最大匹配

    看了两篇博客,觉得写得不错,便收藏之.. 首先是第一篇,转自某Final牛 带花树……其实这个算法很容易理解,但是实现起来非常奇葩(至少对我而言). 除了wiki和amber的程序我找到的资料看着都不 ...

随机推荐

  1. Linux bash shell脚本语法入门

    1.基础 #!/bin/bash   //bash脚本第一句都是这个,他会让系统指定以bash来解释这个脚本 #                 //shell脚本注释符号 2.变量和使用 HOME= ...

  2. HDU4502吉哥系列故事——临时工计划

    http://acm.hdu.edu.cn/showproblem.php?pid=4502 题意 :这个是中文题,我就不再详述了. 思路 : 以前做过一个活动区间选择,结果就按着那个思路敲了,后来发 ...

  3. HDU1429+bfs+状态压缩

    bfs+状态压缩思路:用2进制表示每个钥匙是否已经被找到.. /* bfs+状态压缩 思路:用2进制表示每个钥匙是否已经被找到. */ #include<algorithm> #inclu ...

  4. Java中List的排序

    第一种方法,就是list中对象实现Comparable接口,代码如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2 ...

  5. SPRING IN ACTION 第4版笔记-第九章Securing web applications-007-设置LDAP server比较密码(contextSource、root()、ldif()、)

    一.LDAP server在哪 By default, Spring Security’s LDAP authentication assumes that the LDAP server is li ...

  6. 网上图书商城项目学习笔记-036工具类之CommonUtils及日期转换器

    1.CommonUtils.java package cn.itcast.commons; import java.util.Map; import java.util.UUID; import or ...

  7. bugumongo--ConnectToMongoDB

    连接MongoDB 在能够对MongDB进行操作之前,需要使用BuguConnection连接到MongoDB数据库.代码如下: BuguConnection conn = BuguConnectio ...

  8. 转载:C++ map的基本操作和使用

    声明:本文转自:http://www.cnblogs.com/hailexuexi/archive/2012/04/10/2440209.html 1.map简介 map是一类关联式容器.它的特点是增 ...

  9. IE9 表格错位bug

    最近做项目的时候,出现一个只在原生IE9(非模拟)下的bug. bug图片如下: 以上两个模块的html代码和样式都是一样的,然而下面的显示却出现了各种对齐的bug. 用IE9的调试器查看,代码完全一 ...

  10. awesome-java

    Awesome Java A curated list of awesome Java frameworks, libraries and software. Awesome Java Ancient ...