题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4687

  题意:给一个无向图,求所有的最大匹配的情况所不包含的边。。

  数据比较小,直接枚举边。先求一次最大匹配hig,然后依次枚举所有边,假设此边为一个匹配,那么删掉边的两个节点,然后再剩下的图中求最大匹配t,如果t<hig-1那么就是不包含的边了。关于一般图上的最大匹配算法,O(n^3)的Edmonds's matching algorithm,理解起来比较容易,但是写起来比较麻烦,收集了一个模板,by Amber。。。

 //STATUS:C++_AC_46MS_236KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
//#include <map>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,102400000")
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef __int64 LL;
typedef unsigned __int64 ULL;
//const
const int N=;
const int INF=0x3f3f3f3f;
const int MOD=,STA=;
const LL LNF=1LL<<;
const double EPS=1e-;
const double OO=1e15;
const int dx[]={-,,,};
const int dy[]={,,,-};
const int day[]={,,,,,,,,,,,,};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End int a,b;
int n,m;
int head,tail,Start,Finish;
int link[N]; //表示哪个点匹配了哪个点
int Father[N]; //这个就是增广路的Father……但是用起来太精髓了
int Base[N]; //该点属于哪朵花
int Q[N];
bool mark[N];
bool map[N][N];
bool InBlossom[N];
bool in_Queue[N]; void BlossomContract(int x,int y)
{
fill(mark,mark+n+,false);
fill(InBlossom,InBlossom+n+,false);
#define pre Father[link[i]]
int lca,i;
for (i=x;i;i=pre) {i=Base[i]; mark[i]=true; }
for (i=y;i;i=pre) {i=Base[i]; if (mark[i]) {lca=i; break;} } //寻找lca之旅……一定要注意i=Base[i]
for (i=x;Base[i]!=lca;i=pre){
if (Base[pre]!=lca) Father[pre]=link[i]; //对于BFS树中的父边是匹配边的点,Father向后跳
InBlossom[Base[i]]=true;
InBlossom[Base[link[i]]]=true;
}
for (i=y;Base[i]!=lca;i=pre){
if (Base[pre]!=lca) Father[pre]=link[i]; //同理
InBlossom[Base[i]]=true;
InBlossom[Base[link[i]]]=true;
}
#undef pre
if (Base[x]!=lca) Father[x]=y; //注意不能从lca这个奇环的关键点跳回来
if (Base[y]!=lca) Father[y]=x;
for (i=;i<=n;i++){
if(i==a || i==b)continue;
if (InBlossom[Base[i]]){
Base[i]=lca;
if (!in_Queue[i]){
Q[++tail]=i;
in_Queue[i]=true; //要注意如果本来连向BFS树中父结点的边是非匹配边的点,可能是没有入队的
}
}
}
} void Change()
{
int x,y,z;
z=Finish;
while (z){
y=Father[z];
x=link[y];
link[y]=z;
link[z]=y;
z=x;
}
} void FindAugmentPath()
{
fill(Father,Father+n+,);
fill(in_Queue,in_Queue+n+,false);
for (int i=;i<=n;i++) Base[i]=i; //Init属于同一花朵
head=; tail=;
Q[]=Start; //当前节点进入队列
in_Queue[Start]=;
while (head!=tail){
int x=Q[++head];
for (int y=;y<=n;y++){
if(y==a || y==b)continue;
if (map[x][y] && Base[x]!=Base[y] && link[x]!=y){ //无意义的边
if ( Start==y || link[y] && Father[link[y]] ) //精髓地用Father表示该点是否
BlossomContract(x,y);
else if (!Father[y]){
Father[y]=x;
if (link[y]){
Q[++tail]=link[y];
in_Queue[link[y]]=true;
}
else{
Finish=y;
Change();
return;
}
}
}
}
}
} int Edmonds()
{
int i,cnt=;
memset(link,,sizeof(link));
memset(Father,,sizeof(Father));
for (Start=;Start<=n;Start++){
if(Start==a || Start==b)continue;
if (link[Start]==)
FindAugmentPath(); //如果点没有匹配,那么找BFS增广路
} for(i=;i<=n;i++)
if(link[i])cnt++;
return cnt;
} int e[][],ans[]; int main(){
// freopen("in.txt","r",stdin);
int i,j,hig,cnt;
while(~scanf("%d%d",&n,&m))
{
mem(map,);
for(i=;i<m;i++){
scanf("%d%d",&e[i][],&e[i][]);
map[e[i][]][e[i][]]=map[e[i][]][e[i][]]=true;
} a=b=-;
hig=Edmonds();
cnt=;
for(i=;i<m;i++){
a=e[i][],b=e[i][];
int t=Edmonds();
if(t<hig-)ans[cnt++]=i+;
} printf("%d\n",cnt);
if(cnt){
printf("%d",ans[]);
for(i=;i<cnt;i++)
printf(" %d",ans[i]);
}
putchar('\n');
}
return ;
}

HDU-4687 Boke and Tsukkomi 带花树,枚举的更多相关文章

  1. HDU 4687 Boke and Tsukkomi (一般图匹配带花树)

    Boke and Tsukkomi Time Limit: 3000/3000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Othe ...

  2. HDU 4687 Boke and Tsukkomi 一般图匹配,带花树,思路,输出注意空行 难度:4

    http://acm.hdu.edu.cn/showproblem.php?pid=4687 此题求哪些边在任何一般图极大匹配中都无用,对于任意一条边i,设i的两个端点分别为si,ti, 则任意一个极 ...

  3. HDU 4687 Boke and Tsukkomi (一般图最大匹配)【带花树】

    <题目链接> 题目大意: 给你n个点和m条边,每条边代表两点具有匹配关系,问你有多少对匹配是冗余的. 解题分析: 所谓不冗余,自然就是这对匹配关系处于最大匹配中,即该匹配关系有意义.那怎样 ...

  4. hdu 4687 Boke and Tsukkomi

    Dancing link twice. Find the maximum combination numbers in the first time. Enumerate each node, dan ...

  5. HDOJ 4687 Boke and Tsukkomi 一般图最大匹配带花树+暴力

    一般图最大匹配带花树+暴力: 先算最大匹配 C1 在枚举每一条边,去掉和这条边两个端点有关的边.....再跑Edmonds得到匹配C2 假设C2+2==C1则这条边再某个最大匹配中 Boke and ...

  6. kuangbin带你飞 匹配问题 二分匹配 + 二分图多重匹配 + 二分图最大权匹配 + 一般图匹配带花树

    二分匹配:二分图的一些性质 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j ...

  7. Hdu4687 Boke and Tsukkomi

    Boke and Tsukkomi                                                                               Time ...

  8. 【Learning】带花树——一般图最大匹配

    一般图最大匹配--带花树 问题 ​ 给定一个图,求该图的最大匹配.即找到最多的边,使得每个点至多属于一条边. ​ 这个问题的退化版本就是二分图最大匹配. ​ 由于二分图中不存在奇环,偶环对最大匹配并无 ...

  9. [转]带花树,Edmonds's matching algorithm,一般图最大匹配

    看了两篇博客,觉得写得不错,便收藏之.. 首先是第一篇,转自某Final牛 带花树……其实这个算法很容易理解,但是实现起来非常奇葩(至少对我而言). 除了wiki和amber的程序我找到的资料看着都不 ...

随机推荐

  1. Error building Player: CommandInvokationFailure: Failed to re-package resources. See the Console for details. ShareSDK 也有这种错误

    Error building Player: CommandInvokationFailure: Failed to re-package resources. See the Console for ...

  2. WPF之小动画三

    如果前两篇的博客太为普通,那么接下来的内容将让你动画实在是太厉害了.本文将会介绍两个关于纯手工实现动画的形式,当然动画效果就不用我多说了. 基于帧的动画: 此处的帧并不是之前介绍的Animation这 ...

  3. 214. Shortest Palindrome

    题目: Given a string S, you are allowed to convert it to a palindrome by adding characters in front of ...

  4. 安装Hadoop系列 — 安装JDK-8u5

    安装步骤如下: 1)下载 JDK 8 从http://www.oracle.com/technetwork/java/javasebusiness/downloads/ 选择下载JDK的最新版本 JD ...

  5. 【原创】ZYNQ学习笔记(一) HelloWorld实现

    拿过ZYNQ开发板,里面给了很多部件,果断从网上下载了手册,N多手册和原理图. 要比Spartan-6复杂多了,耐心地看了看,知道ZYNQ系列分为PS(系统)以及PL(逻辑)部分. 之前,自己一直在做 ...

  6. python中os模块path.abspath()返回的并不是绝对值,而是个错误的不存在的拼接地址

    附截图: 当前路径:  a=r'D:\PCsync\python\commands'  为绝对路径 遍历出来的4条应该是D:\PCsync\python\commands\commands.py... ...

  7. javascript 一些需要知道的东西

    这里我直接贴出代码,注释已经补全,欢迎指正: <script type="text/javascript"> /** 1,js中一切皆是对象,函数也是, 2,当定义变量 ...

  8. UVa 201 Squares

    题意: 给出这样一个图,求一共有多少个大小不同或位置不同的正方形. 分析: 这种题一看就有思路,最开始的想法就是枚举正方形的位置,需要二重循环,枚举边长一重循环,判断是否为正方形又需要一重循环,复杂度 ...

  9. CSS基础深入之细说盒子模型

    Html任何一个元素(element)都可以当成一个盒子(box)来看待,可以结合现实中的盒子来理解下文,下文其中一些单词应该是通俗易懂的需要记录的单词. 基本情况 每一个盒子都有一个内容区域(con ...

  10. Android访问C#的WebService要注意的问题

    @Overrideprotected String doInBackground(Object... params) { // 根据命名空间和方法得到SoapObject对象 SoapObject s ...