Chp4: Trees and Graphs
1.Type of Tree
1. Binary Tree:
a binary tree is a tree in which each node has at most two child nodes(denoted as the left child and the right child).
- A directed edge refers to the link from the parent to the child (the arrows in the picture of the tree).
- The root node of a tree is the node with no parents. There is at most one root node in a rooted tree.
- A leaf node has no children.
- The depth (or height) of a tree is the length of the path from the root to the deepest node in the tree. A (rooted) tree with only one node (the root) has a depth of zero.
- Siblings are those nodes that share the same parent node.
- A node p is an ancestor of a node q if p exists on the path from the root node to node q. The node q is then termed as a descendant of p.
- The size of a node is the number of descendants it has including itself.
- The in-degree of a node is the number of edges arriving at that node.
- The out-degree of a node is the number of edges leaving that node.
- The root is the only node in a tree with an in-degree of 0.
- All the leaf nodes have an out-degree of 0.
2. perfect binary tree:
A perfect binary tree is a full binary tree in which all leaves are at the same depth or same level, and in which every parent has two children.[2] (This is ambiguously also called a complete binary tree (see next).) An example of a perfect binary tree is the ancestry chart of a person to a given depth, as each person has exactly two biological parents (one mother and one father); note that this reverses the usual parent/child tree convention, and these trees go in the opposite direction from usual (root at bottom).
3. complete binary tree:
A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible.[3] A tree is called an almost complete binary tree or nearly complete binary tree if the exception holds, i.e. the last level is not completely filled. This type of tree is used as a specialized data structure called a heap.
4.Balanced Binary Tree:
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
the tree is only balanced if:
- The left and right subtrees' heights differ by at most one, AND
- The left subtree is balanced, AND
- The right subtree is balanced
so tree like this is also balanced:
o
/ \
o o
/ / \
o o o
/
o
5. Binary Search Tree:
a binary search tree (BST), sometimes also called an ordered orsorted binary tree, is a node-based binary tree data structure which has the following properties:[1]
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- The left and right subtree each must also be a binary search tree.
- There must be no duplicate nodes.
Binary search tree | ||
---|---|---|
Type | Tree | |
Time complexity in big O notation | ||
Average | Worst case | |
Space | O(n) | O(n) |
Search | O(log n) | O(n) |
Insert | O(log n) | O(n) |
Delete | O(log n) | O(n) |
2. Binary Tree Traversal
in-order, pre-order, post-order
这三种都可以使用recursive 来实现,也可以使用iterative。 见
in-order http://www.cnblogs.com/reynold-lei/p/3458710.html
pre-order http://www.cnblogs.com/reynold-lei/p/3443067.html
post-order http://www.cnblogs.com/reynold-lei/p/3455756.html
3. Tries
trie,又称前缀树或字典樹,是一种有序树,用于保存关联数组,其中的键通常是字符串。与二叉查找树不同,键不是直接保存在节点中,而是由节点在树中的位置决定。一个节点的所有子孙都有相同的前缀,也就是这个节点对应的字符串,而根节点对应空字符串。一般情况下,不是所有的节点都有对应的值,只有叶子节点和部分内部节点所对应的键才有相关的值。
一个保存了 8 个键的 trie 结构,"A", "to", "tea", "ted", "ten", "i", "in", and "inn".
In the example shown, keys are listed in the nodes and values below them. Each complete English word has an arbitrary integer value associated with it. A trie can be seen as adeterministic finite automaton, although the symbol on each edge is often implicit in the order of the branches.
It is not necessary for keys to be explicitly stored in nodes. (In the figure, words are shown only to illustrate how the trie works.)
Though tries are most commonly keyed by character strings, they don't need to be. The same algorithms can easily be adapted to serve similar functions of ordered lists of any construct, e.g., permutations on a list of digits or shapes. In particular, a bitwise trie is keyed on the individual bits making up a short, fixed size of bits such as an integer number or memory address.
4. Tree Balancing: Red-Black Trees and AVL Trees
Problem:
4.1 check if a binary tree is balanced.
public int getHeight(TreeNode root){
if(root == null) return 0;
return Math.max(getHeight(root.left), getHeight(root.right)) + 1;
} public boolean isBalanced(TreeNode root){
if(root == null) return true;
if(Math.abs(getHeight(root.left) - getHeight(root.right)) > 1){
return false;
}else{
return isBalanced(root.left) && isBalanced(root.right);
}
}
这段代码写的很简洁, 值得学习!
4.3 give a sorted array(increasing order), create a binary search tree with minimal height.
Solution:(recurse) 1 insert into the tree the middle element of the array
2 insert into the left subarray elements
3 insert into the right subarray elements
TreeNode create(int arr[], int start, int end){
if(end < start) return null;
int mid = (start + end) / 2;
TreeNode n = new TreeNode(arr[mid]);
n.left = create(arr, start, mid - 1);
n.right = create(arr, mid + 1, end);
return n;
} TreeNode createBST(int arr[]){
return create(arr, 0 , arr.length - 1);
}
4.4 Given a binary search tree, design an algo which creates a linked list of all nodes at each depth. (same as leetcode)
void createLevelLinkedList(TreeNode root, ArrayList<LinkedList<TreeNode>> lists, int level){
if(root == null) return;
LinkedList<TreeNode> list = null;
if(lists.size() == level) lists.add(list);
else list = lists.get(level);
list.add(root);
createLevelLinkedList(root.left, lists, level + 1);
createLevelLinkedList(root.right, lists, level + 1);
}
ArrayList<LinkedList<TreeNode>> createLevelLinkedList(TreeNode root){
ArrayList<LinkedList<TreeNode>> lists = new ArrayList<LinkedList<TreeNode>>();
createLevelLinkedList(root, lists, 0);
return lists;
}
4.5 Implement a function to check if a binary tree is a binary search tree.
Function 1: In-order traversal : copy elements into an array, check if the array is sorted.
Notice that we only need to track the last element.
int last_printed = Integer.MIN_VALUE;
public boolean checkBST(TreeNode n){
if(n == null) return true;
if(!checkBST(n.left)) return false;
if(n.data < last_printed) return false;
last_printed = n.data;
if(!checkBST(n.right)) return false;
return true;
}
Function 2: The Min / Max Solution : the condition is that all left nodes must be less than or equals to the current node, which must be less than all right nodes.
boolean checkBST(TreeNode n){
return checkBST(n, Integer.MIN_VALUE, Integer.MAX_VALUE);
} boolean checkBST(TreeNode n, int min, int max){
if(n == null) return true;
if(n.data <= min || n.data > max) return false;
if(!checkBST(n.left, min, n.data) || !checkBST(n.right, n.data, max)) return false;
return true;
}
4.6 find the 'next' node, i.e, in-order successor, of a given node in a binary search tree. (each node has a link to its parent)
public TreeNode inorderSucc(TreeNode n){
if(n == null) return null; //find right children -> return leftmost node of right subtree, n.parent == null is the root node
if(n.parent == null || n.right != null) return leftmost(n.right);
else{
TreeNode q = n;
TreeNode x = q.parent;
//go up until we are on left instead of right
while(x != null && x.left != q){
q = x;
x = x.parent;
}
return x;// if n is the right most node, it will return null
}
} public TreeNode leftmost(TreeNode n){
if(n == null) return null;
while(n.left != null) n = n.left;
return n;
}
4.7 Find the first common ancestor of two nodes in a binary tree. Note: this is not necessarily a binary search tree.
if the tree is BST:
TreeNode commonAncestor(TreeNode root, TreeNode p, TreeNode q){
if(root == null || p == null || q == null) return false;
if(root.val > p.val && root.val > q.val) return commonAncestor(root.left, p, q);
else if(root.val < p.val && root.val < q.val) return commonAncestor(root.right, p, q);
else return root;
}
in the same way, we can check which p and q are on the same side.
//returns true if p is a descendent of root
boolean covers(TreeNode root, TreeNode p){
if(root == null) return false;
if(root == p) return true;
return covers(root.left, p) || covers(root.right, p);
}
TreeNode commonAncestor(TreeNode root, TreeNode p, TreeNode q){
if(root == null) return null;
if(root == p || root == q) return root;
boolean is_p_on_left = covers(root.left, p);
boolean is_q_on_right = covers(root.right, q);
//if p and q are on different sides, return root
if(is_q_on_right != is_p_on_left) return root; //else, they are on the same side, traverse this side.
TreeNode child = is_p_on_left ? root.left : root.right;
return commonAncestor(child, p, q);
}
TreeNode main(TreeNode root, TreeNode p, TreeNode q){
if(!covers(root, p) || !covers(root, q)) return null;
return commonAncestor(root, p, q);
}
4.9 Given a binary tree in which each node contains a value. Design an algo to print all paths which sum to a given value. Note that path can start or end anywhere in the tree.
这一题不是太懂!
Chp4: Trees and Graphs的更多相关文章
- Cracking the Coding Interview(Trees and Graphs)
Cracking the Coding Interview(Trees and Graphs) 树和图的训练平时相对很少,还是要加强训练一些树和图的基础算法.自己对树节点的设计应该不是很合理,多多少少 ...
- CareerCup Chapter 4 Trees and Graphs
struct TreeNode{ int val; TreeNode* left; TreeNode* right; TreeNode(int val):val(val),left(NULL),rig ...
- 【CareerCup】Trees and Graphs—Q4.3
转载请注明出处:http://blog.csdn.net/ns_code/article/details/24744177 题目: Given a sorted (increasing ord ...
- 【2018 ICPC亚洲区域赛徐州站 A】Rikka with Minimum Spanning Trees(求最小生成树个数与总权值的乘积)
Hello everyone! I am your old friend Rikka. Welcome to Xuzhou. This is the first problem, which is a ...
- CareerCup All in One 题目汇总 (未完待续...)
Chapter 1. Arrays and Strings 1.1 Unique Characters of a String 1.2 Reverse String 1.3 Permutation S ...
- Lua 架构 The Lua Architecture
转载自:http://magicpanda.net/2010/10/lua%E6%9E%B6%E6%9E%84%E6%96%87%E6%A1%A3/ Lua架构文档(翻译) 十 102010 前段时间 ...
- Cracking the coding interview--问题与解答
http://www.hawstein.com/posts/ctci-solutions-contents.html 作者:Hawstein出处:http://hawstein.com/posts/c ...
- How do I learn machine learning?
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644 How Can I Learn X? ...
- CareerCup All in One 题目汇总
Chapter 1. Arrays and Strings 1.1 Unique Characters of a String 1.2 Reverse String 1.3 Permutation S ...
随机推荐
- SecureCRT相关设置
Technorati 标签: SecureCRT,设置 1. 使用SecureCRT对Linux vim进行颜色设置 Linux的控制台颜色很好设置:Options ->Session Opt ...
- xmlspy注册后打开报错的解决办法
XMLSpy 2011中文版破解补丁使用方法 1.如果你下载的版本是r2sp1的话(r2不用此步骤),先用补丁主程序(altova.xmlspy.v2011r2sp1b-patch.exe).2.XM ...
- 《CDN web加速代理》RHEL6
CDN加速代理环境的测试:192.168.1.这个网段是可以上网的,2网段不可以上网 一台apache服务器 :配置 只安装apche服务 IP 192.168.1.59 一台双网卡的服务器 :只安装 ...
- 工作案件1 一切都是有check引起的
HTML中input标签有两个类型,radio和checkbox,一个单选按钮一个复选按钮.jquery可以通过$(":radio")和$(":checkbox" ...
- C#简单的加密类
1.加密 public class EncryptHepler { // 验值 static string saltValue = "XXXX"; // 密码值 static st ...
- Berkeley DB分布式探索
明天回家就没有网络,今晚就将整个编写过程记录下来.顺带整理思路以解决未能解决的问题. 标题有点托大,想将Berkeley DB做成分布式存储,感觉很高端的样子,实际上就是通过ssh将Berkeley ...
- PHP+AJAX无刷新返回天气预报
AjaxJavaScript天气预报php天气预报,用php来写一个天气预报的模块. 天气数据是通过采集中国气象网站的.本来中国天气网站也给出了数据的API接口.以下是API的地址.返回的数据格式为j ...
- 使用Powershell在Microsoft Azure中创建Virtual Machine
获取虚拟机镜像 PS C:\WINDOWS\system32> Get-AzureVMImage 仅获得虚拟机名 PS C:\WINDOWS\system32> (Get-AzureVMI ...
- iOS的SandBox的结构研究
在模拟器中运行iOS程序,都会为该程序创建一个沙盒(SandBox).首先声明,我用的系统是Max OS X 10.7.3,编译器是Xcode 4.3.2.想要找到沙盒目录,先运行Finder,然后在 ...
- Android bluetooth low energy (ble) writeCharacteristic delay callback
I am implementing a application on Android using BLE Api (SDK 18), and I have a issue that the trans ...