***************************************转载请注明出处:http://blog.csdn.net/lttree***************************************

Monkey and Banana

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 6984    Accepted Submission(s): 3582

Problem Description
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana
by placing one block on the top another to build a tower and climb up to get its favorite food.



The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions
of the base and the other dimension was the height. 



They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly
smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked. 



Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.
 
Input
The input file will contain one or more test cases. The first line of each test case contains an integer n,

representing the number of different blocks in the following data set. The maximum value for n is 30.

Each of the next n lines contains three integers representing the values xi, yi and zi.

Input is terminated by a value of zero (0) for n.
 
Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".
 
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
 
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
 
Source
 


一道经典的DP题目,类似于求最长递增子序列吧。

题意:
一堆科学家研究猩猩的智商,给他M种长方体。每种N个。

然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉。

如今给你M种长方体,计算,最高能堆多高。
要求位于上面的长方体的长要大于(注意不是大于等于)以下长方体的长。上面长方体的宽大于以下长方体的宽。


解题:
一个长方体。能够有6种不同的摆法。
由于数据中 长方体种类最多30种。也就是说数组最大能够开到 30*6=180 全然能够

然后用dp[i]来存,到第i个木块,最高能够累多高。
当然。长方体先要以长度排序,长度同样则宽度小的在上。

(⊙v⊙)嗯。OK~

/****************************************
*****************************************
* Author:Tree *
*From :http://blog.csdn.net/lttree *
* Title : monkey and banana *
*Source: hdu 1069 *
* Hint : dp *
*****************************************
****************************************/ #include <iostream>
#include <algorithm>
using namespace std;
struct Cuboid
{
int l,w,h;
}cd[181];
int dp[181];
// sort比較函数
bool cmp( Cuboid cod1,Cuboid cod2 )
{
if( cod1.l==cod2.l ) return cod1.w<cod1.w;
return cod1.l<cod2.l;
}
int main()
{
int i,j,n,len,t_num=1;
int z1,z2,z3;
while( cin>>n && n )
{
len=0;
// 每组数都能够变换为6种长方体
for(i=0;i<n;++i)
{
cin>>z1>>z2>>z3;
cd[len].l=z1,cd[len].w=z2,cd[len++].h=z3;
cd[len].l=z1,cd[len].w=z3,cd[len++].h=z2;
cd[len].l=z2,cd[len].w=z1,cd[len++].h=z3;
cd[len].l=z2,cd[len].w=z3,cd[len++].h=z1;
cd[len].l=z3,cd[len].w=z1,cd[len++].h=z2;
cd[len].l=z3,cd[len].w=z2,cd[len++].h=z1;
} sort(cd,cd+len,cmp);
dp[0]=cd[0].h; // 构建dp数组
int max_h;
for(i=1;i<len;++i)
{
max_h=0;
for( j=0;j<i;++j )
{
if( cd[j].l<cd[i].l && cd[j].w<cd[i].w )
max_h=max_h>dp[j]?max_h:dp[j];
}
dp[i]=cd[i].h+max_h;
} // 再次搜索 全部dp中最大值
max_h=0;
for(i=0;i<len;++i)
if( max_h<dp[i] )
max_h=dp[i];
// 输出
cout<<"Case "<<t_num++<<": maximum height = "<<max_h<<endl;
}
return 0;
}

ACM-经典DP之Monkey and Banana——hdu1069的更多相关文章

  1. 「暑期训练」「基础DP」 Monkey and Banana (HDU-1069)

    题意与分析 给定立方体(个数不限),求最多能堆叠(堆叠要求上方的方块严格小于下方方块)的高度. 表面上个数不限,问题是堆叠的要求决定了每个方块最多可以使用三次.然后就是对3n" role=& ...

  2. kuangbin专题十二 HDU1069 Monkey and Banana (dp)

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. HDU1069 Monkey and Banana —— DP

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS ...

  4. HDU1069 Monkey and Banana

    HDU1069 Monkey and Banana 题目大意 给定 n 种盒子, 每种盒子无限多个, 需要叠起来, 在上面的盒子的长和宽必须严格小于下面盒子的长和宽, 求最高的高度. 思路 对于每个方 ...

  5. 【HDU - 1069】 Monkey and Banana (基础dp)

    Monkey and Banana 直接写中文了 Problem Statement 一组研究人员正在设计一项实验,以测试猴子的智商.他们将挂香蕉在建筑物的屋顶,同时,提供一些砖块给这些猴子.如果猴子 ...

  6. HDU 1069 Monkey and Banana (DP)

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  7. HDU 1069 Monkey and Banana(DP 长方体堆放问题)

    Monkey and Banana Problem Description A group of researchers are designing an experiment to test the ...

  8. HDU 1069:Monkey and Banana(DP)

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  9. HDU 1069 Monkey and Banana 基础DP

    题目链接:Monkey and Banana 大意:给出n种箱子的长宽高.每种不限个数.可以堆叠.询问可以达到的最高高度是多少. 要求两个箱子堆叠的时候叠加的面.上面的面的两维长度都严格小于下面的. ...

随机推荐

  1. android参考

    android:使用BaseExpandableListAdapter实现可折叠的列表 Android-ListView实现SectionIndexer SectionIndexer 的使用(联系人分 ...

  2. Java Web高性能开发(二)

    今日要闻: 性价比是个骗局: 对某个产品学上三五天个把月,然后就要花最少的钱买最多最好的东西占最大的便宜. 感谢万能的互联网,他顺利得手,顺便享受了智商上的无上满足以及居高临下的优越感--你们一千块买 ...

  3. 20151007kaggle Titanic心得

    Titanic是kaggle上一个练手的比赛,kaggle平台提供一部分人的特征,以及是否遇难,目的是预测另一部分人是否遇难.目前抽工作之余,断断续续弄了点,成绩为0.79426.在这个比赛过程中,接 ...

  4. C++11无限制的unions

    [C++11无限制的unions] 在标准 C++ 中,并非任意的类型都能做为 union 的成员.比方说,带有 non-trivial 构造函数的类型就不能是 union 的成员.在新的标准里,移除 ...

  5. 应用TcpListener实现的socket服务器端

    前言 项目中要实现一个简单的socket服务器端,采用了TcpListener这个类.除了基本的功能之外,有几处需要注意的点. 要能同时接收多个客户端的连接,当然,不需要几千个那么多. 要能探测到客户 ...

  6. Codeforces 660 C. Hard Process (尺取)

    题目链接:http://codeforces.com/problemset/problem/660/C 尺取法 #include <bits/stdc++.h> using namespa ...

  7. HDU 4496 D-City (并查集)

    题意:给定一个图,问你每次删除一条边后有几个连通块. 析:水题,就是并查集的运用,倒着推. 代码如下: #include <cstdio> #include <string> ...

  8. Unable to load dll 的解决方案

    前几天在做项目时,需要用到一个非托管的 dll 库,其实使用 .Net 的互操作技术可以很方便地调用非托管 dll 文件中的函数,但是在执行时出现了“Unable to load dll HRESUL ...

  9. HDU 1392 Surround the Trees 构造凸包

    又是一道模板题 #include <iostream> #include <cstring> #include <cstdlib> #include <cst ...

  10. linux TCP数据包重传过程----小结

    于TCP/IP协议栈的TCP协议的重传功能是由在linux内核源码(net/ipv4/tcp_output.c)中的函数tcp_retransmit_skb()实现的 代码如下: /* This re ...