1 魔方阵概念

魔方阵是指由1,2,3……n2填充的,每一行、每一列、对角线之和均相等的方阵,阶数n = 3,4,5…。魔方阵也称为幻方阵

例如三阶魔方阵为:

魔方阵有什么的规律呢?

魔方阵分为奇幻方和偶幻方。而偶幻方又分为是4的倍数(如4,8,12……)和不是4的倍数(如6,10,14……)两种。下面分别进行介绍。

2 奇魔方的算法

2.1 奇魔方的规律与算法

奇魔方(阶数n = 2 * m + 1,m =1,2,3……)规律如下:

  1. 数字1位于方阵中的第一行中间一列;
  2. 数字a(1 < a  ≤ n2)所在行数比a-1行数少1,若a-1的行数为1,则a的行数为n;
  3. 数字a(1 < a  ≤ n2)所在列数比a-1列数大1,若a-1的列数为n,则a的列数为1;
  4. 如果a-1是n的倍数,则a(1 < a  ≤ n2)的行数比a-1行数大1,列数与a-1相同。

2.2 奇魔方算法的C语言实现

 #include <stdio.h>
// Author: http://furzoom.com/
// N为魔方阶数
#define N 11 int main()
{
int a[N][N];
int i;
int col,row; col = (N-)/;
row = ; a[row][col] = ; for(i = ; i <= N*N; i++)
{
if((i-)%N == )
{
row++;
}
else
{
// if row = 0, then row = N-1, or row = row - 1
row--;
row = (row+N)%N; // if col = N, then col = 0, or col = col + 1
col ++;
col %= N;
}
a[row][col] = i;
}
for(row = ;row<N;row++)
{
for(col = ;col < N; col ++)
{
printf("%6d",a[row][col]);
}
printf("\n");
}
return ;
}

3 偶魔方的算法

偶魔方的情况比较特殊,分为阶数n = 4 * m(m =1,2,3……)的情况和阶数n = 4 * m + 2(m = 1,2,3……)情况两种。

3.1 阶数n = 4 * m(m =1,2,3……)的魔方(双偶魔方)

算法1:阶数n = 4 * m(m =1,2,3……)的偶魔方的规律如下:

  1. 按数字从小到大,即1,2,3……n2顺序对魔方阵从左到右,从上到下进行填充;
  2. 将魔方中间n/2列的元素上、下进行翻转;
  3. 将魔方中间n/2行的元素左、右进行翻转。

C语言实现

 #include <stdio.h>
// Author: http://furzoom.com/
// N为魔方阶数,
#define N 12 int main()
{
int a[N][N];//存储魔方
int i, temp;//临时变量
int col, row;//col 列,row 行 //初始化
i = ;
for(row = ;row < N; row++)
{
for(col = ;col < N; col ++)
{
a[row][col] = i;
i++;
}
} //翻转中间列
for(row = ; row < N/; row ++)
{
for(col = N/;col < N/*;col ++)
{
temp = a[row][col];
a[row][col] = a[N-row-][col];
a[N-row-][col] = temp;
}
} //翻转中间行
for(col = ; col < N/; col ++)
{
for(row = N/;row < N/ * ;row ++)
{
temp = a[row][col];
a[row][col] = a[row][N-col-];
a[row][N-col-] = temp;
}
} for(row = ;row < N; row++)
{
for(col = ;col < N; col ++)
{
printf("%5d",a[row][col]);
}
printf("\n");
}
return ;
}

算法2:阶数n = 4 * m(m =1,2,3……)的偶魔方的规律如下:

  1. 按数字从小到大,即1,2,3……n2顺序对魔方阵从左到右,从上到下进行填充;
  2. 将魔方阵分成若干个4×4子方阵,将子方阵对角线上的元素取出;
  3. 将取出的元素按从大到小的顺序依次填充到n×n方阵的空缺处。

C语言实现

 #include <stdio.h>
// Author: http://furzoom.com/
// N为魔方阶数
#define N 12 int main()
{
int a[N][N];//存储魔方
int temparray[N*N/];//存储取出的元素
int i;//循环变量
int col, row;// col 列,row 行 //初始化
i = ;
for(row = ;row < N; row++)
{
for(col = ;col < N; col ++)
{
a[row][col] = i;
i++;
}
}
//取出子方阵中对角线上的元素,且恰好按从小到大的顺序排放
i = ;
for(row = ;row < N; row++)
{
for(col = ;col < N; col ++)
{
if((col % == row % ) || ( == ( col % + row % )))
{
temparray[i] = a[row][col];
i++;
}
}
}
//将取出的元素按照从大到小的顺序填充到n×n方阵中
i = N*N/ -;
for(row = ;row < N; row++)
{
for(col = ;col < N; col ++)
{
if((col % == row % ) || ( == ( col % + row % )))
{
a[row][col] = temparray[i];
i--;
}
}
}
//输出方阵
for(row = ;row < N; row++)
{
for(col = ;col < N; col ++)
{
printf("%5d",a[row][col]);
}
printf("\n");
}
return ;
}

3.2 阶数n = 4 * m + 2(m =1,2,3……)的魔方(单偶魔方)

算法

设k = 2 * m + 1;单偶魔方是魔方中比较复杂的一个。

  1. 将魔方分成A、B、C、D四个k阶方阵,如下图这四个方阵都为奇方阵,利用上面讲到的方法依次将A、D、B、C填充为奇魔方。
  2. 交换A、C魔方元素,对魔方的中间行,交换从中间列向右的m列各对应元素;对其他行,交换从左向右m列各对应元素。
  3. 交换B、D魔方元素,交换从中间列向左m – 1列各对应元素。

C语言实现

#include <stdio.h>
// Author: http://furzoom.com/
// N为魔方阶数
#define N 10 int main()
{
int a[N][N] = { {} };//存储魔方
int i,k,temp;
int col,row;// col 列,row 行 //初始化
k = N / ;
col = (k-)/;
row = ;
a[row][col] = ;
//生成奇魔方A
for(i = ; i <= k*k; i++)
{
if((i-)%k == )//前一个数是3的倍数
{
row++;
}
else
{
// if row = 0, then row = N-1, or row = row - 1
row--;
row = (row+k)%k; // if col = N, then col = 0, or col = col + 1
col ++;
col %= k;
}
a[row][col] = i;
} //根据A生成B、C、D魔方
for(row = ;row < k; row++)
{
for(col = ;col < k; col ++)
{
a[row+k][col+k] = a[row][col] + k*k;
a[row][col+k] = a[row][col] + *k*k;
a[row+k][col] = a[row][col] + *k*k;
}
} // Swap A and C
for(row = ;row < k;row++)
{
if(row == k / )//中间行,交换从中间列向右的m列,N = 2*(2m+1)
{
for(col = k / ; col < k - ; col++)
{
temp = a[row][col];
a[row][col] = a[row + k][col];
a[row + k][col] = temp;
}
}
else//其他行,交换从左向右m列,N = 2*(2m+1)
{
for(col = ;col < k / ;col++)
{
temp = a[row][col];
a[row][col] = a[row + k][col];
a[row + k][col] = temp;
}
}
} // Swap B and D
for(row = ; row < k;row++)//交换中间列向左m-1列,N = 2*(2m+1)
{
for(i = ;i < (k - )/ - ;i++)
{
temp = a[row][k+ k/ - i];
a[row][k+ k / -i] = a[row + k][k+k/ -i];
a[row + k][k+k/ -i] = temp;
}
} //输出魔方阵
for(row = ;row < N; row++)
{
for(col = ;col < N; col ++)
{
printf("%5d",a[row][col]);
}
printf("\n");
} return ;
}

==========================================》

你若要放弃,那我就可以安慰自己了,因为这样我不再孤独了,可以参考能够不断往前走,成功难道不是早晚的是事吗?

魔方阵算法及C语言实现的更多相关文章

  1. 任意阶魔方阵(幻方)的算法及C语言实现

    写于2012.10: 本来这是谭浩强那本<C程序设计(第四版)>的一道课后习题,刚开始做得时候去网上找最优的算法,结果发现奇数和双偶数(4的倍数)的情况下算法都比较简单,但是单偶数(2的倍 ...

  2. C语言——打印魔方阵(每一行,每一列,对角线之和相等)

    <一>魔方阵说明: 魔方阵是一个N*N的矩阵: 该矩阵每一行,每一列,对角线之和都相等: <二>魔方阵示例: 三阶魔方阵: 8   1   6 3   5   7 4   9 ...

  3. n阶魔方阵(奇数阵)的输出

    需求 要求输出1~n²的自然数构成的魔方阵. STEP 1 什么是魔方阵? 魔方阵,古代又称“纵横图”,是指组成元素为自然数1.2…n2的平方的n×n的方阵,其中每个元素值都不相等,且每行.每列以及主 ...

  4. 一个UUID生成算法的C语言实现 --- WIN32版本 .

    一个UUID生成算法的C语言实现——WIN32版本   cheungmine 2007-9-16   根据定义,UUID(Universally Unique IDentifier,也称GUID)在时 ...

  5. 无限大整数相加算法的C语言源代码

    忙里偷闲,终于完成了无限大整数相加算法的C语言代码,无限大整数相加算法的算法分析在这里. 500位的加法运行1000次,不打印结果的情况下耗时0.036秒,打印结果的情况下耗时16.285秒. 下面是 ...

  6. 数据结构算法集---C++语言实现

    //数据结构算法集---C++语言实现 //各种类都使用模版设计,可以对各种数据类型操作(整形,字符,浮点) /////////////////////////// // // // 堆栈数据结构 s ...

  7. 【2(2N+1)魔方阵 】

    /* 2(2N+1)魔方阵 */ #include<stdio.h> #include<stdlib.h> #define N 6 #define SWAP(x, y) {in ...

  8. 1164: 零起点学算法71——C语言合法标识符(存在问题)

    1164: 零起点学算法71——C语言合法标识符 Time Limit: 1 Sec  Memory Limit: 64 MB   64bit IO Format: %lldSubmitted: 10 ...

  9. 【最全】经典排序算法(C语言)

    算法复杂度比较: 算法分类 一.直接插入排序 一个插入排序是另一种简单排序,它的思路是:每次从未排好的序列中选出第一个元素插入到已排好的序列中. 它的算法步骤可以大致归纳如下: 从未排好的序列中拿出首 ...

随机推荐

  1. ES6学习(2)——arrows箭头函数

    Arrows => 箭头函数 箭头函数,若有了解过coffeeScript的同学,或许对此印象深刻,因为它可以让语法省略不少,特别是对于回调函数,会让代码更清晰简洁. expression 让我 ...

  2. Java设计模式系列之动态代理模式(转载)

    代理设计模式 定义:为其他对象提供一种代理以控制对这个对象的访问. 动态代理使用 java动态代理机制以巧妙的方式实现了代理模式的设计理念. 代理模式示例代码 public interface Sub ...

  3. (转)UML常用图的几种关系的总结

    在UML的类图中,常见的有以下几种关系: 泛化(Generalization),  实现(Realization), 关联(Association), 聚合(Aggregation), 组合(Comp ...

  4. javascript函数作用域和提前声明

    一些语言如C.java都有块级作用域,即花括号内的每一段代码都具有各自的作用域,而且变量在声明它们的代码段之外是不可见的,但是javascript没有块级作用域.javascript使用函数作用域,即 ...

  5. [iOS基础控件 - 6.9.2] 静态单元格 QQ功能列表

    使用storyboard设计静态的表格数据   A.实现步骤 1.控制器继承UITableViewController 2.在storyboard中使用TableViewController,删除原来 ...

  6. FZU 2082 过路费 (树链剖分 修改单边权)

    题目链接:http://acm.fzu.edu.cn/problem.php?pid=2082 树链剖分模版题,求和,修改单边权. #include <iostream> #include ...

  7. Unity3D中关于场景销毁时事件调用顺序的一点记录

    先说一下我遇到的问题,我弄了一个对象池管理多个对象,对象池绑定在一个GameObject上,每个对象在OnBecameInvisible时会进行回收(即移出屏幕就回收),但是当场景切换或停止运行程序时 ...

  8. PHP实现基于Swoole简单的HTTP服务器

    引用Swoole官方定义: PHP语言的异步.并行.高性能网络通信框架,使用纯C语言编写,提供了PHP语言的异步多线程服务器,异步TCP/UDP网络客户端,异步MySQL,数据库连接池,AsyncTa ...

  9. PostgreSQL的 initdb 源代码分析之七

    继续分析:由于我使用initdb的时候,没有指定 locale,所以会使用OS的缺省locale,这里是 en_US.UTF-8 printf(_("The files belonging ...

  10. 脚本命令高级Bash脚本编程指南(31):数学计算命令

    题记:写这篇博客要主是加深自己对脚本命令的认识和总结实现算法时的一些验经和训教,如果有错误请指出,万分感谢. 高等Bash脚本编程指南(31):数学盘算命令 成于坚持,败于止步 操作数字 factor ...