HDU 1043 Eight (A* + HASH + 康托展开)
Eight
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 13956 Accepted Submission(s): 3957 Special Judge
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x
where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12 13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x r-> d-> r->
The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.
Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).
In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three arrangement.
1 2 3 x 4 6 7 5 8
is described by this list:
1 2 3 x 4 6 7 5 8
#include <iostream>
#include <cmath>
#include <string>
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int SIZE = ;
const int GOAL = ;
const int HASH[] = {,,,,,,,,};
const int UP_DATE[][] = {{,-},{,},{-,},{,}};
int PATH[];
int PRE[];
struct Node
{
int map[SIZE][SIZE];
int x,y;
int h,g;
int hash;
bool operator <(const Node a) const
{
return h != a.h ? h > a.h : g > a.g;
}
}; bool solve_able(const Node & r);
bool check(const int,const int);
void cal_hash(Node & r);
void cal_h(Node & r);
void search(const Node & r);
void show(void);
int main(void)
{
Node first;
char s[]; while(gets(s))
{
int k = ;
memset(PRE,-,sizeof(PRE));
memset(PATH,-,sizeof(PATH));
for(int i = ;i <= ;i ++)
for(int j = ;j <= ;j ++)
{
if(s[k] >= '' && s[k] <= '')
first.map[i][j] = s[k] - '';
else if(s[k] == 'x')
{
first.map[i][j] = ;
first.x = i;
first.y = j;
}
else
j --;
k ++;
}
if(!solve_able(first))
{
printf("unsolvable\n");
continue;
}
cal_hash(first);
if(first.hash == GOAL)
{
puts("");
continue;
}
PATH[first.hash] = -;
first.g = ;
cal_h(first);
search(first);
} return ;
} bool solve_able(const Node & r)
{
int sum = ,count = ;
int temp[]; for(int i = ;i <= ;i ++)
for(int j = ;j <= ;j ++)
{
temp[count] = r.map[i][j];
count ++;
}
for(int i = ;i < ;i ++)
for(int j = i + ;j < ;j ++)
if(temp[j] < temp[i] && temp[j] && temp[i])
sum ++;
return !(sum & );
} bool check(const int x,const int y)
{
if(x >= && x <= && y >= && y <= )
return true;
return false;
} void cal_hash(Node & r)
{
int sum = ,count = ,box;
int temp[]; for(int i = ;i <= ;i ++)
for(int j = ;j <= ;j ++)
{
temp[count] = r.map[i][j];
count ++;
}
for(int i = ;i < ;i ++)
{
box = ;
for(int j = i + ;j < ;j ++)
if(temp[j] < temp[i])
box ++;
sum += (box * HASH[i]);
}
r.hash = sum;
} void search(Node const & r)
{
Node cur,next; priority_queue<Node> que;
que.push(r);
while(!que.empty())
{
cur = que.top();
que.pop();
for(int i = ;i < ;i ++)
{
next = cur;
next.x = cur.x + UP_DATE[i][];
next.y = cur.y + UP_DATE[i][];
if(!check(next.x,next.y))
continue;
swap(next.map[cur.x][cur.y],next.map[next.x][next.y]);
cal_hash(next); if(PATH[next.hash] == -)
{
PATH[next.hash] = i;
PRE[next.hash] = cur.hash;
next.g ++;
cal_h(next);
que.push(next);
}
if(next.hash == GOAL)
{
show();
return ;
}
}
} } void cal_h(Node & r)
{
int ans = ;
for(int i = ;i <= ;i ++)
for(int j = ;j <= ;j ++)
if(r.map[i][j])
ans += abs(i - ((r.map[i][j] - ) / + )) + abs(j - ((r.map[i][j] - ) % + ));
r.h = ans;
} void show(void)
{
string ans;
int hash = GOAL; ans.clear();
while(PRE[hash] != -)
{
switch(PATH[hash])
{
case :ans += 'l';break;
case :ans += 'r';break;
case :ans += 'u';break;
case :ans += 'd';break;
}
hash = PRE[hash];
}
for(int i = ans.size() - ;i >= ;i --)
printf("%c",ans[i]);
cout << endl;
}
HDU 1043 Eight (A* + HASH + 康托展开)的更多相关文章
- HDU 1430 魔板(康托展开+BFS+预处理)
魔板 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submis ...
- hdu.1430.魔板(bfs + 康托展开)
魔板 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submis ...
- 双向广搜+hash+康托展开 codevs 1225 八数码难题
codevs 1225 八数码难题 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description Yours和zero在研究A*启 ...
- HDU 1043 八数码(A*搜索)
在学习八数码A*搜索问题的时候须要知道下面几个点: Hash:利用康托展开进行hash 康托展开主要就是依据一个序列求这个序列是第几大的序列. A*搜索:这里的启示函数就用两点之间的曼哈顿距离进行计算 ...
- POJ 1077 && HDU 1043 Eight A*算法,bfs,康托展开,hash 难度:3
http://poj.org/problem?id=1077 http://acm.hdu.edu.cn/showproblem.php?pid=1043 X=a[n]*(n-1)!+a[n-1]*( ...
- HDU 1043 & POJ 1077 Eight(康托展开+BFS+预处理)
Eight Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 30176 Accepted: 13119 Special ...
- HDU 1043 Eight(双向BFS+康托展开)
http://acm.hdu.edu.cn/showproblem.php?pid=1043 题意:给出一个八数码,求出到达指定状态的路径. 思路:路径寻找问题.在这道题里用到的知识点挺多的.第一次用 ...
- HDU 1043 Eight(反向BFS+打表+康托展开)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1043 题目大意:传统八数码问题 解题思路:就是从“12345678x”这个终点状态开始反向BFS,将各 ...
- HDU 1043 & POJ 1077 Eight(康托展开+BFS | IDA*)
Eight Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 30176 Accepted: 13119 Special ...
随机推荐
- 第二百六十九天 how can I 坚持
什么是明事理,搞不懂啊,好烦. 有点像我妈. 为什么突然就想买房了呢,为什么?年龄到了,考虑的东西就不一样了. 哎,不要想太多,睡觉.
- I - Control - HDU 4289 (最大流)
题意:有N个城市,现在城市S出现了一伙歹徒,他们想运送一些炸弹到D城市,不过警方已经得到了线报知道他们的事情,不过警察不知道他们所在的具体位置,所以只能采取封锁城市的办法来阻断暴徒,不过封锁城市是需要 ...
- poj 1915 http://poj.org/problem?id=1915
/**< */#include <stdio.h> #include <string.h> #include <stdlib.h> #include < ...
- php-fpm占用系统资源分析
故障检测 1.别的先不管,先top看一下cpu.ram.swap哪个比较紧张. 由上图分析,可以看出共有602个进程,其中有601个进程休眠了.这好像有点不对劲,内核进程也就80个左右,加上memca ...
- Javascript高级篇-JS闭包
Javascript闭包 1.变量的作用域 1.1局部变量 1.2全局变量(声明在外边或不用var来声明的变量) 2.外部读取方法内部的局部(私有)变量 function a(){ var b = & ...
- TypeScript学习笔记(三):类
类 在TypeScript中,类似于C#的结构,即一个文件中可以存在多个类,且文件名可以任意取,我们先看一个简单的类的示例. class Person { private name: string; ...
- linux 下安装apache 快速教程
最近自学linux,看鸟哥的文章.提到了apache,所以在虚拟机redhat 5下安装了一把, 结合国内外文章写下快速可行的教程: --------------------------------- ...
- C#获取当前应用程序所在路径及环境变量
一.获取当前文件的路径 string str1=Process.GetCurrentProcess().MainModule.FileName;//可获得当前执行的exe的文件名. string st ...
- json jar包支持
json-lib工具包(json核心包)下载地址: http://sourceforge.net/projects/json-lib/files/json-lib/json-lib-2.4/ json ...
- Python3.5.2官方文档学习备忘录
网址:https://docs.python.org/3/ 虽然学习官方文档有些耗时,不过看最原版的还是感觉好一点,原汁原味没有曲解没有省略. 从命令行向Python传递参数,运行:python - ...