POJ3260——The Fewest Coins(多重背包+完全背包)
The Fewest Coins
Description
Farmer John has gone to town to buy some farm supplies. Being a very efficient man, he always pays for his goods in such a way that the smallest number of coins changes hands, i.e., the number of coins he uses to pay plus the number of coins he receives in change is minimized. Help him to determine what this minimum number is.
FJ wants to buy T (1 ≤ T ≤ 10,000) cents of supplies. The currency system has N (1 ≤ N ≤ 100) different coins, with values V1, V2, ..., VN (1 ≤ Vi ≤ 120). Farmer John is carrying C1 coins of value V1, C2 coins of value V2, ...., and CN coins of value VN (0 ≤ Ci ≤ 10,000). The shopkeeper has an unlimited supply of all the coins, and always makes change in the most efficient manner (although Farmer John must be sure to pay in a way that makes it possible to make the correct change).
Input
Line 1: Two space-separated integers: N and T.
Line 2: N space-separated integers, respectively V1, V2, ..., VN coins (V1, ...VN)
Line 3: N space-separated integers, respectively C1, C2, ..., CN
Output
Line 1: A line containing a single integer, the minimum number of coins involved in a payment and change-making. If it is impossible for Farmer John to pay and receive exact change, output -1.
Sample Input
3 70
5 25 50
5 2 1
Sample Output
3
题目大意:
FJ同学去买东西,东西的价值为T,他和卖家都有N种金币,FJ希望交易完成时金币变化最小。
求最少的金币变化数量。FJ的金币个数有限,奸商的金币数目无限。
解题思路:
背包问题,FJ的每种金币个数有限可以看做是多重背包问题,奸商的金币数目无限可以看做是完全背包问题。
设F1[i]为FJ付款为i时的最小金币数,设F2[i]为奸商找钱为i时的最小金币数。
则F1[i+T]+F2[i]就是所求的最小金币变化数量。(F1用多重背包求解,F2用完全背包求解)
PS:这里的背包求得是最小价值,且要恰好装满。故初始化数组时应 F[0]=0,F[1-MAXN]=INT_MAX;(好久没做背包了,下意识把F[1]=0了,结果T==1时总是输出0,查了好久。。。)
Code:
#include<string>
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<limits.h>
#define MAXN 1000000
#define INF 9999999 //背包被调 直接抄的背包九讲,因为有两个数组,增加一个数组参数
using namespace std;
int N,V,c[MAXN+],a[MAXN+],w=,f1[MAXN+],f2[MAXN+];
int min(int a,int b)
{
return a>b?b:a;
}
void ZeroOnePack(int cost,int weight,int f[]) //01背包
{
for (int v=V; v>=cost; v--)
f[v]=min(f[v],f[v-cost]+weight);
}
void CompletePack(int cost,int weight,int f[]) //完全背包
{
for (int v=cost;v<=V;v++)
f[v]=min(f[v],f[v-cost]+weight);
}
void MultiplePack(int cost,int weight,int amount,int f[]) //多重背包
{
if (cost*amount>=V)
{
CompletePack(cost,weight,f);
return ;
}
int k=;
while (k<amount)
{
ZeroOnePack(k*cost,k*weight,f);
amount=amount-k;
k*=;
}
ZeroOnePack(amount*cost,amount*weight,f);
}
void init(int M,int f[])
{
f[]=; //保证背包装满 具体原因参见背包九讲
for (int i=; i<=M; i++) //求最小价值要把初值赋值为正无穷(INT_MAX可能会导致整型溢出)
f[i]=INF;
}
int main()
{
while (cin>>N>>V)
{ int V2=V;
int max=;
for (int i=; i<=N; i++){
cin>>c[i];
if (c[i]>max) max=c[i];}
for (int i=; i<=N; i++)
cin>>a[i];
V=max*max+V2+; //要找钱,V要比T大很多才行
init(V,f1);
init(V,f2);
for (int i=;i<=N;i++)
MultiplePack(c[i],,a[i],f1);
for (int i=;i<=N;i++)
CompletePack(c[i],,f2);
int ans=INF;
for (int i=;i<=V-V2;i++)
if (f1[i+V2]!=INF&&f2[i]!=INF) ans=min(ans,f1[i+V2]+f2[i]);
if (ans!=INF) printf("%d\n",ans); //ans==INF表示数据没有变过,则表示无解
else printf("-1\n");
}
return ;
}
POJ3260——The Fewest Coins(多重背包+完全背包)的更多相关文章
- POJ 3260 The Fewest Coins(多重背包+全然背包)
POJ 3260 The Fewest Coins(多重背包+全然背包) http://poj.org/problem?id=3260 题意: John要去买价值为m的商品. 如今的货币系统有n种货币 ...
- POJ3260:The Fewest Coins(混合背包)
Description Farmer John has gone to town to buy some farm supplies. Being a very efficient man, he a ...
- POJ3260 The Fewest Coins(混合背包)
支付对应的是多重背包问题,找零对应完全背包问题. 难点在于找上限T+maxv*maxv,可以用鸽笼原理证明,实在想不到就开一个尽量大的数组. 1 #include <map> 2 #inc ...
- POJ 3260 The Fewest Coins(多重背包问题, 找零问题, 二次DP)
Q: 既是多重背包, 还是找零问题, 怎么处理? A: 题意理解有误, 店主支付的硬币没有限制, 不占额度, 所以此题不比 1252 难多少 Description Farmer John has g ...
- poj3260 The Fewest Coins
Description Farmer John has gone to town to buy some farm supplies. Being a very efficient man, he a ...
- The Fewest Coins POJ - 3260
The Fewest Coins POJ - 3260 完全背包+多重背包.基本思路是先通过背包分开求出"付出"指定数量钱和"找"指定数量钱时用的硬币数量最小值 ...
- POJ 3260 The Fewest Coins(完全背包+多重背包=混合背包)
题目代号:POJ 3260 题目链接:http://poj.org/problem?id=3260 The Fewest Coins Time Limit: 2000MS Memory Limit: ...
- POJ3260The Fewest Coins[背包]
The Fewest Coins Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6299 Accepted: 1922 ...
- POJ 1742 Coins(多重背包, 单调队列)
Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar. ...
随机推荐
- Linux进程调度
原文地址: http://cchxm1978.blog.163.com/blog/static/35428253201092910491682/ 相当不错的文章,读了后收藏,多谢博主分享! ----- ...
- 《大话设计模式》学习笔记0:设计模式的原则 && UML类图
一.单一职责原则:就一个类而言,应该仅有一个引起它变化的原因. 如果一个类承担的职责过多,就等于把这些职责耦合在一起,一个职责的变化可能会削弱或者抑制这个类完成其他职责的能力.这种耦合会导致脆弱的设计 ...
- Adobe Photoshop CS4 Extended CS4 激活序列号
Adobe Photoshop CS4 Extended CS4 激活序列号(SN):1330-1779-4488-2103-6954-09161330-1170-1002-7856-5023-077 ...
- debian 学习记录-1 -安装
之前装ubuntu12. 后来没有继续用,图形界面很不错,没有继续学习原因很多: · 没有基础知识支持(拷贝文件都是用鼠标拖动的) · 图形界面很好,导致没有使用命令行,安装驱动什么的都是靠鼠标点击 ...
- asp.net runat="server" && hiddenfield
runat="server", c#可以直接获得client控件,并且赋值 hiddenfield 可以作为传值,或者界面存值,后台每次读取,并且再赋值到前台,这样前台就可以把上一 ...
- js给数字加三位一逗号间隔的两种方法(面试题)
方法一: <script type= "text/javascript"> //保留三位小数,toLocaleString() 方法可把一个 Number 对象转换 ...
- php总结:1.php介绍
1.什么是php PHP,即“Hypertext Preprocessor”,是一种被广泛应用的开源通用脚本语言,尤其适用于 Web 开发并可嵌入 HTML 中去.它的语法利用了 C.Java 和 P ...
- apache、php隐藏头信息的方法
本文介绍下,在apache与php中隐藏头部信息的方法,有需要的朋友参考下. 一.apache隐藏头部信息 apache 的 httpd.conf 有两个配置可以控制是否显示服务器信息给用户.Serv ...
- Demo学习: Collapsible Panels
Collapsible Panels 设置TUniPanel布局属性,布局属性在Ext里是比较常用的属性,当前版本虽已经提供了布局功能,但很不完善,比如当Panel.TitlePosition=tpR ...
- Linux恢复删除文件
一.介绍extundelete 1.extundelete的文件恢复工具,该工具最给力的一点就是支持ext3/ext4双格式分区恢复. 2. 在实际线上恢复过程中,切勿将extundelete安装到你 ...