【编者按】

刘斌,OneAPM后端研发工程师,拥有10多年编程经验,参与过大型金融、通信以及Android手机操作系的开发,熟悉Linux及后台开发技术。曾参与翻译过《第一本Docker书》、《GitHub入门与实践》、《Web应用安全权威指南》、《WEB+DB PRESS》、《Software Design》等书籍,也是Docker入门与实践课程主讲人。本文所阐述的「时间序列数据库」,系笔者所负责产品 Cloud Insight 对性能指标进行聚合、分组、过滤过程中的梳理和总结。

通过上一章《时序列数据库武斗大会之什么是TSDB》的介绍,相信大家已经知道了什么是时序列数据库,以及对它能干什么,具有什么特点。

那么在这一篇文章中,我们将介绍一下目前都有哪些 TSDB,以及它们各自的特点,并基于个人观点,给出一定的(喜好)评判。

由于个人能力所限,有些地方调查可能不到位,再加上一定的个人主观因素,跟其他人的结论可能不一样,不过这应该也正常。没有调查过就没有发言权,只有真正的深度用户的发言,才具有说服务力,你权当这里就是我抛砖了。

虽然也有人用 ElasticSearch 或者 MongoDB 来存储时序列数据,作为更适合分类为 NOSQL 的这两个数据库软件,我们这里就不对它们做介绍了。

DB-Engines 中时序列数据库排名

我们先来看一下DB-Engines中关于时序列数据库的排名,这是当前(2016年2月的)排名情况:

下面,我们就按照这个排名的顺序,简单介绍一下这些时序列数据库中的一些。下面要介绍的 TSDB 以开源的为主,如果是商业或者 SaaS 服务,也简单介绍一下其特点,让大家能对其他领域的事物也有所了解。

这里有一个例外,就是 Pinot 并不在这个排名里,但是我也把它列在了这里。

1. InfluxDB

InfluxDB 由 Golang 语言编写,也是由 Golang 编写的软件中比较著名的一个,在很多 Golang 的沙龙或者文章中可能都会把 InfluxDB 当标杆来介绍,这也间接帮助 InfluxDB 提高了知名度。

InfluxDB的主要特点包括下面这些:

  • schemaless(无结构),可以是任意数量的列
  • 可扩展(集群)
  • 方便、强大的查询语言
  • Native HTTP API
  • 集成了数据采集、存储、可视化功能
  • 实时数据 Downsampling
  • 高效存储,使用高压缩比算法,支持retention polices

InfluxDB 是 TSDB 中为数不多的进行了用户和角色方面实现的,提供了 Cluster Admin、Database Admin 和 Database User 三种角色。

InfluxDB 的数据采集系统也支持多种协议和插件: - 行文本 - UDP - Graphite - CollectD - OpenTSDB

不过 InfluxDB 每次变动都较大,尤其是在存储和集群方面,追求平平安过日子,不想瞎折腾的可以考虑下。

注意:由于InfluxDB开发太活跃了,很可能你在网上搜到的资料都是老的,会害到你,所以你需要以官方文档为主。

一句话总结:欣欣向荣、值得一试。

2. RRDtool

RRDtool 全称为 Round Robin Database Tool,也就是用于操作 RRD 的工具,简单明了的软件名。

什么是 RRD 呢?简单来说它就是一个循环使用的固定大小的数据库文件(其实也不太像典型的数据库)。

大体来说,RRDtool 提供的主要工具如下:

  • 创建RRD(rrdtool create)
  • 更新RRD(rrdtool update)
  • 画图(rrdtool graph)

这其中,画图功能是最复杂也是最强大的,甚至支持下面这些图形,这是其他 TSDB 中少见的:

  • 指标比较,对两个指标值进行计算,描画出满足条件的区域
  • 移动平均线
  • 和历史数据进行对比
  • 基于最小二乘法的线性预测
  • 曲线预测
  • 总之,它的画图功能太丰富了。

一句话总结:老牌经典、艺多不压身。

3. Graphite

Graphite 由 Orbitz, LLC 的 Chris Davis 创立于 2006 年,它主要有两个功能:

  • 存储数值型时序列数据
  • 根据请求对数据进行可视化(画图)

相应的,它的特点为:

  • 分布式时序列数据存储,容易扩展
  • 功能强大的画图Web API,提供了大量的函数和输出方式
  • Graphite本身不带数据采集功能,但是你可以选择很多第三方插件,比如适用于* collectd、Ganglia或Sensu的插件等。同时,Graphite也支持Plaintext、Pickle和AMQP这些数据输入方式。

Graphite主要由三个模块组成:

  • whisper:创建、更新RRD文件
  • carbon:以守护进程的形式运行,接收数据写入请求
    • carbon-cache:数据存储
    • carbon-relay:分区和复制,位于carbon-cache之前,类似carbon-cache的负载均衡
    • carbon-aggregator:数据集计,用于减轻carbon-cache的负载
  • graphite-web:用于读取、展示数据的Web应用

whisper 使用了类似 RRDtool 的 RRD 文件格式,它也不像 C/S 结构的软件一样,没有服务进程,只是作为 Python library 使用,提供对数据的 create/update/fetch 操作。

如果你对它的性能比较在意,这里有一份老的数据可供参考。

Google、Etsy、GitHub、豆瓣、Instagram、Evernote 和 Uber 等很多知名公司都是 Graphite 的用户。有此背景,其可信度又加一层,而且网上的资料也相当的多,值得评估一下。

一句话总结:群众基础好、可以参考。

4. OpenTSDB

OpenTSDB 是一个分布式、可伸缩的时间序列数据库。它支持豪秒级数据采集所有 metrics,支持永久存储(不需要 downsampling),和 InfluxDB 类似,它也是无模式,以 tag 来实现维度的概念。

比如,这就是它的一个metric例子:

mysql.bytes_received 1287333217 66666666 schema=foo host=db1

OpenTSDB 的节点称为 TSD(Time Series Daemon (TSD)),它没有主、从之分,消除了单点隐患,非常容易扩展。它主要以HBase作为存储系统,现在也增加了对 Cassandra 和 Bigtable(非云端)。

OpenTSDB 以数据存储和查询为主,附带了一个简单地图形界面(依赖Gnuplot),共开发、调试使用。

一句话总结:好用,我们的产品Cloud Insight 也在用这项技术来实现对性能指标进行聚合、分组、过滤。

5.KDB+

所有 TSDB 中,估计就数这个最酷了,我说的是域名,只有两个字母,猥琐地想一下,域名就值很多钱 :-)。

kdb+是一个面向列的时序列数据库,以及专门为其设计的查询语言q(和他们的域名一样简短)。Kdb+ 混合使用了流、内存和实时分析,速度很快,支持分析 10 亿级别的记录以及快速访问TB级别的历史数据。

不过这是一个商业产品,但是也提供了免费版本(貌似还限制在32位)。

6.KairosDB

KairosDB 是一个 OpenTSDB 的 fork,不过是基于 Cassandra 存储的。由于 Cassandra 的行比 HBase 宽,所以 KairosDB 的 Cassandra 的默认行大小为 3 星期,而 OpenTSDB 的 HBase 则为 1 小时。

KairosDB 支持通过 Telnet、Rest、Graphite 等协议写入数据,你也可以通过编写插件自己实现数据写入。

KairosDB 也提供了基于 Web API 的查询接口,支持数据聚合、持过滤和分组等功能。

同时 KairosDB 提供了一个供开发用的 Web UI,图形绘制引擎使用了 Flot。

和 OpenTSDB 类似,KairosDB 也提供了插件机制,你可以使用插件完成如下工作:

  • 添加数据点(data point)监听器
  • 添加新的数据存储服务
  • 添加新的协议处理程序
  • 添加自定义系统监视服务

7.Druid

Druid 是一个快速、近实时的海量数据 OLAP 系统,并且是开源的。Druid 诞生于 Metamarkets,后来一些核心人员创立了 IMPLY 公司,进行 Druid 相关的产品开发。

Druid 会按时间来进行分区(segment),并且是面向列存储的。它的主要特性如下:

  • 支持嵌套数据的列式存储
  • 层级查询
  • 二级索引
  • 实时数据摄取
  • 分布式容错架构

根据去年底 druid.io 的白皮书,现在生产环境下最大的集群规模如下:

  • 3M EVENTS / SECOND SUSTAINED (200B+ EVENTS/DAY)

  • 10 – 100K EVENTS / SECOND / CORE
  • 500TB OF SEGMENTS (>50 TRILLION RAW EVENTS)

  • 5000 CORES (>400 NODES, >100TB RAM)

  • QUERY LATENCY (500MS AVERAGE)
  • 90% < 1S 95% < 2S 99% < 10S
  • 3+ trillion events/month
  • 3M+ events/sec through Druid’s real-time ingestion
  • 100+ PB of raw data
  • 50+ trillion events

Druid 企业用户比较多,比如 OneAPM、Netflix 和 Paypal 等。具体可以参考 http://druid.io/druid-powered.html

Druid 架构比较复杂,因此对部署和运维也有一定的负担,比如需要的机器多、机器配置要高(尤其是内存)。

一句话总结:好用,我们在用。

8.Prometheus

Prometheus 是一个开源的服务监控系统和时序列数据库,由社交音乐平台 SoundCloud 在2012年开发,最近也变得很流行,最新版本为 0.17.0rc2。

Prometheus 从各种输入源采集 metric,进行计算后显示结果,或者根据指定条件出发报警。

和其他监控系统相比,Prometheus 的特点包括:

  • 多维数据模型(时序列数据由metric名和一组key/value组成)
  • 灵活的查询语言
  • 不依赖分布式存储,单台服务器即可工作
  • 通过基于HTTP的pull方式采集是序列数据
  • 可以通过中间网关进行时序列数据推送
  • 多种可视化和仪表盘支持

由于 Prometheus 采用了类似 OpenTSDB 和 InfluxDB 的 key/value 维度机制,所以如果你对任一种 TSDB 有了解的话,学习起来会简单些。

一句话总结:貌似比较火,何不试一试?

9.Pinot

Pinot 是一个开源的实时、分布式 OLAP 数据存储方案。它来自 Linkedin,虽然 Linkedin 最近估价表现很差,但是他们创建的各种软件、中间件实在太多了。这一点我们做软件的都应该向 Linkedin 表示感谢。

Pinot 就像是一个 Druid 的 copy,不过两者的灵感都来源于SenseiDB(Sensei 在日语里为老师的意思,写成汉字为“先生”)。

Pinot 也像 Druid 一样,能加载 offline 数据(Hadoop 文件)和实时数据(Kafka)。Pinot 从设计上就面向水平扩展。

Pinot 主要特点:

  • 面向列
  • 插拔式索引引擎:排序索引、位图索引和反向索引
  • 根据查询语句和segment信息对查询/执行计划进行优化
  • 从 Kafka 实时数据摄取(ingestion)
  • 从 Hadoop 进行批量摄取
  • 类似 SQL 的查询语言,支持聚合、过滤、分组、排序和唯一处理。
  • 支持多值字段
  • 水平扩展和容错

Pinot 的特点和 Druid 很像,两者可互为参考。

一句话总结:背靠大树好乘凉。

小结

这里我们为大家介绍了几种常见 TSDB,如不出意外,你可能会在这里选择某一种来使用。

尽管如此,我们还是会为大家介绍更多一些的项目,让大家能更多的了解一些不同的 TSDB 及其特点,也能帮助读者深入了解 TSDB 的各种场景,开阔思路。

在下一篇文章中,我们将会为各位再介绍几种时序列数据库。

这是本系列文章的其他部分:

本文转自 OneAPM 官方博客

时序列数据库武斗大会之 TSDB 名录 Part 1的更多相关文章

  1. 时序列数据库武斗大会之TSDB名录 Part 2

    [编者按] 刘斌,OneAPM后端研发工程师,拥有10多年编程经验,参与过大型金融.通信以及Android手机操作系的开发,熟悉Linux及后台开发技术.曾参与翻译过<第一本Docker书> ...

  2. 时序列数据库武斗大会之什么是 TSDB ?

    本文选自 OneAPM Cloud Insight 高级工程师刘斌博客 . 刘斌,一个才思敏捷的程序员,<第一本 Docker 书>.<GitHub 入门与实践>等书籍译者,D ...

  3. [转]时序列数据库武斗大会之什么是TSDB

    由于工作上的关系,最近看了一些关于时序列数据库的东西,当然,我所看的也都是以开源方案为主. 趁着这股热劲还没退,希望能整理一些资料出来.如果正好你也有这方面的需求,那么希望这一系列的介绍能够帮助到你. ...

  4. 时序列数据库武斗大会之 OpenTSDB 篇

    [编者按] 刘斌,OneAPM后端研发工程师,拥有10多年编程经验,参与过大型金融.通信以及Android手机操作系的开发,熟悉Linux及后台开发技术.曾参与翻译过<第一本Docker书> ...

  5. 时间序列数据库武斗大会之 KairosDB 篇

    [编者按] 刘斌,OneAPM后端研发工程师,拥有10多年编程经验,参与过大型金融.通信以及Android手机操作系的开发,熟悉Linux及后台开发技术.曾参与翻译过<第一本Docker书> ...

  6. ORACLE数据库在导入导出时序列不一致的问题

    ORACLE数据库在导入导出时序列不一致的问题   在使用ORACLE数据库时,当给一个表设置自增字段时,我们经常会使用到序列+触发器来完成.但当你需要对数据库进行导入导出时,序列很容易出问题. 当你 ...

  7. 2016 DTCC(中国数据库技术大会)

    上周去参加了2016 DTCC(数据库技术大会),会议总共持续3天,议题非常多,我这里搜集了最新的公开的PPT内容,有兴趣的同学可以下载看看,PPT合集下载链接为:http://pan.baidu.c ...

  8. BLAST - 序列数据库搜索

    我生信入门,老师就要求我学好blast比对,说得也确实是很有道理,是个人都知道比对是最基本的东西,现在再想想那老师的建议,也只能呵呵一笑. 北大生物信息公开课有一章专门讲得序列数据库搜索,可以好好看看 ...

  9. 2017中国数据库技术大会(DTCC)又要来啦!期待~~

    2017第八届中国数据库技术大会(DTCC2017)将于2017年5月11-13日如约而至.2017中国数据库技术大会(DTCC)以"数据驱动•价值发现"为主题,汇集来自互联网.电 ...

随机推荐

  1. RDD机制实现模型Spark初识

    Spark简介 Spark是基于内存计算的大数据分布式计算框架.Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性.       在Spark中,通过RDD( ...

  2. UIView-4-EventForViews(在view上加入button时候的事件处理)

    #import "ViewController.h" @interface ViewController () @end @implementation ViewControlle ...

  3. 终端命令收集(关于 mac与ubuntu)

    本人曾使用ubuntu 是踩过有一些坑,以及在处理问题时学到的知识,总结一下,便于以后记忆. 1 基本命令 (1)列出文件 ls 参数 目录名 参数 -w 显示中文,-l 详细信息, -a 包括隐藏文 ...

  4. 使用httpclient发送post请求与get请求

    最近因为项目的要求,需要使用httpclient来发送请求.但是查阅了许多博客,大家发送请求的方法各不相同.原因是因为httpclient的jar包的不同版本,其内部方法也不相同.因此抛开具体用到的j ...

  5. ArcEngine10:ArcGIS version not specified. You must call RuntimeManager.Bind before creating any ArcGIS components.

    在Program.cs中添加ESRI.ArcGIS.RuntimeManager.Bind(ESRI.ArcGIS.ProductCode.EngineOrDesktop);如下 static voi ...

  6. C++与Lua交互(一)

    引言 之前做手游项目时,客户端用lua做脚本,基本所有游戏逻辑都用它完成,玩起来有点不爽,感觉"太重"了.而我又比较偏服务端这边(仅有C++),所以热情不高.最近,加入了一个端游项 ...

  7. [android]netd与NetworkManagementService初印象

    [功能]Netd是什么,主要负责什么功能 为什么这次会接触Netd主要是因为在设置防火墙时候碰到了.关于Netd可以干什么可以从Netd的源码中CommandListener中得到答案.按照我的理解, ...

  8. 韩顺平细说Servlet视频系列意外收获之用命令行编译带有包的java类解决方案

    命令行编译带有包的java类 在命令行编译这一块,基本上都是新手入门时了解一下,然后就直奔IDE而去.这样固然没错,就怕那些--.然后今天在视频中看到了这种方法,觉得可能会用到,所以就记录下来了,以备 ...

  9. 锋利的qjuey-ajax

    jquery 中的ajax   load方法主要获取web服务器上静态数据 1 load方法载入HTML文档 load(url [,data] [,callback]) $(function(){ $ ...

  10. 为云饰数据库添加Index

    Asset Collection: 1. _id_ 2. CategoryId_1_Date_-1 3. CategoryId_1_Id_1 4. CategoryId_1_Name_1 5. Cat ...