Building a Space Station

题目链接:

http://acm.hust.edu.cn/vjudge/contest/124434#problem/C

Description

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task.

The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.

n

x1 y1 z1 r1

x2 y2 z2 r2

...

xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3

10.000 10.000 50.000 10.000

40.000 10.000 50.000 10.000

40.000 40.000 50.000 10.000

2

30.000 30.000 30.000 20.000

40.000 40.000 40.000 20.000

5

5.729 15.143 3.996 25.837

6.013 14.372 4.818 10.671

80.115 63.292 84.477 15.120

64.095 80.924 70.029 14.881

39.472 85.116 71.369 5.553

0

Sample Output

20.000

0.000

73.834

##题意:

给出n个球体的球心坐标和半径,可以在两个球体的表面连一条通路,代价为距离. 求使得所有球体联通的最小花费.


##题解:

裸的最小生成树.
注意两点之间的距离为 (球心距 - 半径和); 若这个式子小于0,则距离为0.


##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define eps 1e-8
#define maxn 110
#define mod 100000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;

struct node{

int left,right;

double cost;

}road[maxn*maxn];

int cmp(node x,node y) {return x.cost<y.cost;}

int p[maxn],m,n;

int find(int x) {return p[x]=(p[x]==x? x:find(p[x]));}

double kruskal()

{

double ans=0;

for(int i=1;i<=n;i++) p[i]=i;

sort(road+1,road+m+1,cmp);

for(int i=1;i<=m;i++)

{

int x=find(road[i].left);

int y=find(road[i].right);

if(x!=y)

{

ans+=road[i].cost;

p[x]=y;

}

}

return ans;

}

int sign(double x) {

if(fabs(x)<eps) return 0;

return x<0? -1:1;

}

double x[maxn],y[maxn],z[maxn],r[maxn];

double get_dis(int a, int b) {

double d = sqrt((x[a]-x[b])(x[a]-x[b]) + (y[a]-y[b])(y[a]-y[b]) + (z[a]-z[b])*(z[a]-z[b]));

if(sign(d-r[a]-r[b]) >= 0) return d-r[a]-r[b];

return 0;

}

int main(int argc, char const *argv[])

{

//IN;

while(scanf("%d", &n) != EOF && n)
{
m = 0;
memset(road,0,sizeof(road)); for(int i=1; i<=n; i++) {
scanf("%lf %lf %lf %lf", &x[i],&y[i],&z[i],&r[i]);
} for(int i=1; i<=n; i++) {
for(int j=i+1; j<=n; j++) {
road[++m].left = i;
road[m].right = j;
road[m].cost = get_dis(i,j);
}
} double ans=kruskal(); printf("%.3lf\n", ans);
} return 0;

}

POJ 2031 Building a Space Station (最小生成树)的更多相关文章

  1. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  2. POJ 2031 Building a Space Station 最小生成树模板

    题目大意:在三维坐标中给出n个细胞的x,y,z坐标和半径r.如果两个点相交或相切则不用修路,否则修一条路连接两个细胞的表面,求最小生成树. 题目思路:最小生成树树模板过了,没啥说的 #include& ...

  3. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  4. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  5. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  6. POJ - 2031 Building a Space Station 三维球点生成树Kruskal

    Building a Space Station You are a member of the space station engineering team, and are assigned a ...

  7. POJ 2031 Building a Space Station (计算几何+最小生成树)

    题目: Description You are a member of the space station engineering team, and are assigned a task in t ...

  8. POJ 2031 Building a Space Station【最小生成树+简单计算几何】

    You are a member of the space station engineering team, and are assigned a task in the construction ...

  9. POJ - 2031C - Building a Space Station最小生成树

    You are a member of the space station engineering team, and are assigned a task in the construction ...

随机推荐

  1. iOS方法封装

    (void) setSubView:(UIView *)masterView subCCGRect:(CGRect)subCCGRect imageName:(NSString *)imageName ...

  2. javascript算法汇总(持续更新中)

    1. 线性查找 <!doctype html> <html lang="en"> <head> <meta charset="U ...

  3. android中最先被执行的activity

    像C.C++.JAVA都有一个主函数作为程序的入口点,但是Android中并没有一个明确的主窗口,那么在有多个Activity的情况下,最先被执行的是哪个呢?这完全取决于配置文件AndroidMain ...

  4. 自学了三天的SeaJs学习,解决了前端的一些问题,与小伙伴们一起分享一下!

    我为什么学习SeaJs? [第一]:为了解决项目中资源文件版本号的问题,以及打包压缩合并等问题. [第二]:好奇心和求知欲.[我发现很多知名网站也都在使用(qq空间, msn, 淘宝等等),而且 Se ...

  5. context:property-placeholder

    这个在spring中配置文件中是非常常用的. context:property-placeholder大大的方便了我们数据库的配置. 只需要在spring的配置文件里添加一句:<context: ...

  6. Linux busybox mount -a fstab

    /*********************************************************************** * Linux busybox mount -a fs ...

  7. Oracle中常见的33个等待事件小结

    在Oracle 10g中的等待事件有872个,11g中等待事件1116个. 我们可以通过v$event_name 视图来查看等待事件的相关信息     一. 等待事件的相关知识 1.1 等待事件主要可 ...

  8. JOB的创建,定时,执行

    --建表 create table test_job(para_date date);  commit;  insert into test_job values(sysdate);  commit; ...

  9. 在linux的shell里访问一个URL

    在linux上访问一个网址有四种方法 1.elinks,用法举例: [weishusheng@centOS6 ~]$ elinks -dump http://www.baidu.com 2. wget ...

  10. centos使用网易163yum源

    CentOS系统自带的更新源的速度实在是慢,为了让CentOS6使用速度更快的YUM更新源,可以选择163(网易)的更新源. 1.下载repo文件 wget http://mirrors.163.co ...