Building a Space Station

题目链接:

http://acm.hust.edu.cn/vjudge/contest/124434#problem/C

Description

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task.

The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.

n

x1 y1 z1 r1

x2 y2 z2 r2

...

xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3

10.000 10.000 50.000 10.000

40.000 10.000 50.000 10.000

40.000 40.000 50.000 10.000

2

30.000 30.000 30.000 20.000

40.000 40.000 40.000 20.000

5

5.729 15.143 3.996 25.837

6.013 14.372 4.818 10.671

80.115 63.292 84.477 15.120

64.095 80.924 70.029 14.881

39.472 85.116 71.369 5.553

0

Sample Output

20.000

0.000

73.834

##题意:

给出n个球体的球心坐标和半径,可以在两个球体的表面连一条通路,代价为距离. 求使得所有球体联通的最小花费.


##题解:

裸的最小生成树.
注意两点之间的距离为 (球心距 - 半径和); 若这个式子小于0,则距离为0.


##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define eps 1e-8
#define maxn 110
#define mod 100000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;

struct node{

int left,right;

double cost;

}road[maxn*maxn];

int cmp(node x,node y) {return x.cost<y.cost;}

int p[maxn],m,n;

int find(int x) {return p[x]=(p[x]==x? x:find(p[x]));}

double kruskal()

{

double ans=0;

for(int i=1;i<=n;i++) p[i]=i;

sort(road+1,road+m+1,cmp);

for(int i=1;i<=m;i++)

{

int x=find(road[i].left);

int y=find(road[i].right);

if(x!=y)

{

ans+=road[i].cost;

p[x]=y;

}

}

return ans;

}

int sign(double x) {

if(fabs(x)<eps) return 0;

return x<0? -1:1;

}

double x[maxn],y[maxn],z[maxn],r[maxn];

double get_dis(int a, int b) {

double d = sqrt((x[a]-x[b])(x[a]-x[b]) + (y[a]-y[b])(y[a]-y[b]) + (z[a]-z[b])*(z[a]-z[b]));

if(sign(d-r[a]-r[b]) >= 0) return d-r[a]-r[b];

return 0;

}

int main(int argc, char const *argv[])

{

//IN;

while(scanf("%d", &n) != EOF && n)
{
m = 0;
memset(road,0,sizeof(road)); for(int i=1; i<=n; i++) {
scanf("%lf %lf %lf %lf", &x[i],&y[i],&z[i],&r[i]);
} for(int i=1; i<=n; i++) {
for(int j=i+1; j<=n; j++) {
road[++m].left = i;
road[m].right = j;
road[m].cost = get_dis(i,j);
}
} double ans=kruskal(); printf("%.3lf\n", ans);
} return 0;

}

POJ 2031 Building a Space Station (最小生成树)的更多相关文章

  1. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  2. POJ 2031 Building a Space Station 最小生成树模板

    题目大意:在三维坐标中给出n个细胞的x,y,z坐标和半径r.如果两个点相交或相切则不用修路,否则修一条路连接两个细胞的表面,求最小生成树. 题目思路:最小生成树树模板过了,没啥说的 #include& ...

  3. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  4. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  5. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  6. POJ - 2031 Building a Space Station 三维球点生成树Kruskal

    Building a Space Station You are a member of the space station engineering team, and are assigned a ...

  7. POJ 2031 Building a Space Station (计算几何+最小生成树)

    题目: Description You are a member of the space station engineering team, and are assigned a task in t ...

  8. POJ 2031 Building a Space Station【最小生成树+简单计算几何】

    You are a member of the space station engineering team, and are assigned a task in the construction ...

  9. POJ - 2031C - Building a Space Station最小生成树

    You are a member of the space station engineering team, and are assigned a task in the construction ...

随机推荐

  1. 内核MKDEV(MAJOR, MINOR)宏

    版本:linux-2.6.24.4宏:    MKDEV(MAJOR, MINOR);  说明: 获取设备在设备表中的位置.        MAJOR   主设备号        MINOR   次设 ...

  2. c#关键字详解

    c#关键字   关键字是对编译器有特殊意义的预定义的保留标识符.它们不能在程序中用作普通标识符,除非在它们前面加上@前缀. 第一部分 一.访问关键字:base,this base:访问基类的成员. 用 ...

  3. MasterPage的自身Bug还是?

    如果不想每个页面都设置css样式,那就在MasterPage设置即可,但是有个问题就是路径并不能识别正确,所以必须让你的页面和MasterPage的页面在平级的位置. 例如MasterPage.mas ...

  4. android gallery 自定义边框+幻灯片

    最近在项目中用到图片轮播,试了Gallery,ViewFlipper,ViewPager,感觉Gallery最符合需求,但是Gallery的系统边框很难看,项目中要求用自己的背景图片. 下面来看一下使 ...

  5. Android中Java反射技术的使用示例

    import java.lang.reflect.Constructor; import java.lang.reflect.Field; import java.lang.reflect.Metho ...

  6. python模拟http请求2

    发现了一个非常好用的第三方module:requests,模拟接口非常简单. 详细了解请移步:http://docs.python-requests.org/en/latest/ 非常不错 #!cod ...

  7. svn - 常用命令

    基本流程: 获取新的代码,svn up(date),获取最新代码 锁住文件,防止你提交的时候,别人修改,造成冲突,svn lock filename 修改之后,svn add filename,将文件 ...

  8. jvm内部现成运行

    hi,all 最近抽时间把JVM运行过程中产生的一些线程进行了整理,主要是围绕着我们系统jstack生成的文件为参照依据.  前段时间因为系统代码问题,造成性能瓶颈,于是就dump了一份stack出来 ...

  9. java transient简介

    我们都知道一个对象只要实现了Serilizable接口,这个对象就可以被序列化,java的这种序列化模式为开发者提供了很多便利,我们可以不必关系具体序列化的过程,只要这个类实现了Serilizable ...

  10. Oracle 介绍 (未完待续)

    关键字含义 1. DML.DDL.DCL DML----Data Manipulation Language 数据操纵语言例如:insert,delete,update,select(插入.删除.修改 ...