bzoj 4423 [AMPPZ2013]Bytehattan(对偶图,并查集)
【题目链接】
http://www.lydsy.com/JudgeOnline/problem.php?id=4423
【题意】
给定一个平面图,随时删边,并询问删边后两点是否连通。强制在线。
【科普】
设有平面图G=(V,E),满足下列条件的图G'= (V',E') 称为图G的对偶图:G的任一面Ri内有且仅有一点Vi';对G的域Ri和Rj的共同边界Ek,画一条边Ek'=(Vi',Vj')且只与Ek交于一点;若Ek完全处于Ri中,则Vi'有一自环Ek',如下图G'是G的对偶图:
From here
【思路】
如果不强制在线的话,就是BC上的一道题,可以时光倒流+并查集来做。
加上强制在线,我们将平面图转化为它的对偶图,两点之间删边的操作使得两个平面连通,当对应的两个平面不连通的时候,说明两点之间有环,此时删边后两点依旧连通。并查集维护连通性。
【代码】
#include<cstdio>
#include<iostream>
#define FOR(a,b,c) for(int a=b;a<=c;a++)
using namespace std; const int N = +; int id[N][N],n,K; struct UFS {
int fa[N*N];
UFS() { FOR(i,,N*N-) fa[i]=i; }
int Find(int u) {
return u==fa[u]? u:fa[u]=Find(fa[u]);
}
void Union(int u,int v) {
u=Find(u),v=Find(v);
if(u!=v) fa[u]=v;
}
} s; int main()
{
scanf("%d%d",&n,&K);
int cnt=;
//id[0][..]||id[..][0] <- 0
FOR(i,,n-) FOR(j,,n-)
id[i][j]=++cnt;
int b,c,e,f,ans=;
char a[],d[];
FOR(i,,K) {
if(ans)
scanf("%d%d%s%d%d%s",&b,&c,&a,&e,&f,&d);
else
scanf("%d%d%s%d%d%s",&e,&f,&d,&b,&c,&a);
if(a[]=='N') e=b-,f=c;
else e=b,f=c-;
if(ans=(s.Find(id[b][c])!=s.Find(id[e][f])))
s.Union(id[b][c],id[e][f]);
puts(ans?"TAK":"NIE");
}
return ;
}
bzoj 4423 [AMPPZ2013]Bytehattan(对偶图,并查集)的更多相关文章
- 【BZOJ4423】[AMPPZ2013]Bytehattan 对偶图+并查集
[BZOJ4423][AMPPZ2013]Bytehattan Description 比特哈顿镇有n*n个格点,形成了一个网格图.一开始整张图是完整的.有k次操作,每次会删掉图中的一条边(u,v), ...
- [BZOJ4423][AMPPZ2013]Bytehattan(对偶图+并查集)
建出对偶图,删除一条边时将两边的格子连边.一条边两端连通当且仅当两边的格子不连通,直接并查集处理即可. #include<cstdio> #include<algorithm> ...
- BZOJ_4423_[AMPPZ2013]Bytehattan_对偶图+并查集
BZOJ_4423_[AMPPZ2013]Bytehattan_对偶图+并查集 Description 比特哈顿镇有n*n个格点,形成了一个网格图.一开始整张图是完整的. 有k次操作,每次会删掉图中的 ...
- BZOJ 4423: [AMPPZ2013]Bytehattan 并查集+平面图转对偶图
4423: [AMPPZ2013]Bytehattan Time Limit: 3 Sec Memory Limit: 128 MB Submit: 277 Solved: 183 [Submit ...
- BZOJ 4423: [AMPPZ2013]Bytehattan
Sol 对偶图+并查集. 思路非常好,将网格图转化成对偶图,在原图中删掉一条边,相当于在对偶图中连上一条边(其实就是网格的格点相互连边),每次加边用并查集维护就可以了. 哦对,还要注意边界就是网格外面 ...
- BZOJ 4423: [AMPPZ2013]Bytehattan 平面图转对偶图 + 并查集
Description 比特哈顿镇有n*n个格点,形成了一个网格图.一开始整张图是完整的.有k次操作,每次会删掉图中的一条边(u,v),你需要回答在删除这条边之后u和v是否仍然连通. Input 第一 ...
- BZOJ.2054.疯狂的馒头(并查集)
BZOJ 倒序处理,就是并查集傻题了.. 并查集就是确定下一个未染色位置的,直接跳到那个位置染.然而我越想越麻烦=-= 以为有线性的做法,发现还是要并查集.. 数据随机线段树也能过去. //18400 ...
- 【bzoj5183】[Baltic2016]Park 离线+对偶图+并查集
题目描述 在Byteland的首都,有一个矩形围栏围起来的公园.在这个公园里树和访客都以一个圆形表示.公园有四个出入口,每个角落一个(1=左下角,2=右下角,3=右上角,4=左上角).访客能通过这些出 ...
- 【bzoj3007】拯救小云公主 二分+对偶图+并查集
题目描述 英雄又即将踏上拯救公主的道路…… 这次的拯救目标是——爱和正义的小云公主. 英雄来到boss的洞穴门口,他一下子就懵了,因为面前不只是一只boss,而是上千只boss.当英雄意识到自己还是等 ...
随机推荐
- jsp片段
转载自:http://blog.csdn.net/lovejavaydj/article/details/7293145 使用jspf 在开发中写jsp页面时,通常都要通过如下方式在jsp文件头部引入 ...
- python自省指南
深入python中对自省的定义: python的众多强大功能之一,自省,正如你所知道的,python中万物皆对象,自省是指代码可以查看内存中以对象形式存在的其他模块和函数,获取它们的信息,并对它们进行 ...
- Git教程之版本回退(4)
现在,我们已经学会了修改文件,然后把修改提交到Git版本库,现在再次修改readme.txt文件如下:
- Linux Shell 工作原理
Linux系统提供给用户的最重要的系统程序是Shell命令语言解释程序.它不属于内核部分,而是在核心之外,以用户态方式运行.其基本功能是解释并执行用户打入的各种命令,实现用户与Linux核心的接口.系 ...
- latex 三线表
LaTeX 处理三线表相当简单方便.用到的宏包主要是 booktabs .代码如下: 需要添加包:\usepackage{booktabs}. \documentclass{article} \use ...
- C# 控件双缓冲控制 ControlStyles 枚举详解
ControlStyles 枚举 .NET Framework 4 指定控件的样式和行为. 此枚举有一个 FlagsAttribute 特性,通过该特性可使其成员值按位组合. 命名空间: Sy ...
- Java语言基本语法
Java语言基本语法 一.标识符和关键字 标识符 在java语言中,用来标志类名.对象名.变量名.方法名.类型名.数组名.包名的有效字符序列,称为“标识符”: 标识符由字母.数字.下划线.美元符号组成 ...
- [POJ1236]Network of Schools(并查集+floyd,伪强连通分量)
题目链接:http://poj.org/problem?id=1236 这题本来是个强连通分量板子题的,然而弱很久不写tarjan所以生疏了一下,又看这数据范围觉得缩点这个事情可以用点到点之间的距离来 ...
- 1137. Bus Routes(dfs)
1137 做过一样的 怎么又忘了 再一次搜超时 不用回溯 #include <iostream> #include<cstdio> #include<cstring> ...
- Android公共库(缓存 下拉ListView 下载管理Pro 静默安装 root运行 Java公共类)
介绍总结的一些android公共库,包含缓存(图片缓存.预取缓存).公共View(下拉及底部加载更多ListView.底部加载更多ScrollView.滑动一页Gallery).及Android常用工 ...