Main idear

Treat the tracking problem as a classification task and use online learning techniques to update the object model



Main Innovative Points

1 Based on structured output prediction (Structured SVM), in which the task is directly predict the change in object location between frames, instead of relying on a heuristic intermediate step for producting
labelled binary samples with which to update the classifier, which is often a source of error during tracking


2 The online structured output SVM  learning framework is also easy to incorporate image features and kernels, and SVM also has good generalization ability,robustness to label noise and flexibility in object representation
through the use of kernels

3 不是採用离目标近的为正样本,远的为负样本这样的准側,而是採用overlap。大于一定值的为正,小于为负

4 核函数

5 对支持向量进行限制,将权重影响小的去掉

 
The issues raised by other tracking-by-detection approach

1 the classification confidence function provides an accurate estimate of object position is not explicitly incorporated into the learning algorithm, since the classifier is trained only with
binary labels and has no information about transformations

2 Examples used for training the classifier are all equally weighted, meaning that a negative example which overlaps significantly with the tracker bounding box is treated the same as one which
overlaps very little. One implication of this is that slight inaccuracy during tracking can lead to poorly labelled examples, which are likely to reduce the accuracy of the classifier, in turn leading to further tracking inaccuracy

3  the labeller is usually chosen based on intuitions and heuristics, rather than having a tight coupling with the classifier. Mistakes made by the labeller manifest themselves as label noise,
and many current state-of-the-art approaches try to overcome this problem by using robust loss functions [13, 14], semi-supervised learning [11, 17], or multiple-instance learning [3, 23]. We argue that all of these techniques, though justified in increasing the
robustness of the classifier to label noise, are not addressing the real problem which stems from separating the labeller from the learner





How To Do

1 总览
算法分为两步:1 预估物体的位移  2 更新判别函数

Structure Learning是一种同意输出为结构的学习方法。理论上不论什么输出都能够作为一种结构。即能够解决随意问题
Structure SVM 是结构学习的一种,已是一种比較成熟的算法实现框架,论文參考參考附件部分1,2,3 ,代码网址

2 建立 Structure SVM 模型
文中的模型为:
当中的约束条件是从>=0进化来的
1 >=0时w的解不唯一。所以我们选择是间隔最大的w并限制w的长度,——> >=1 
2 松弛>=1-
3 将1换为损失函数,越不同,间隔要求越严格(大)

3 解这个SVM模型

A
核心步骤基于SMO(序列最小最优化)Style的,SMO的基本思路是:选择两个变量(至少一个违反KKT)。固定其它变量,进行两个变量的二次规划问题求解,这样将问题不断的分解为子问题进行求解,进而达到求解原问题的目标。SMO參考4,5


B
文中还引入了Budget来对支持向量的个数进行约束。进而能够达到实时方法为:
Similar to [21], we choose to remove the support vector which results in the smallest change to the weight vector w, as measured by ||w||2


Search over Y on a polar grid rather than considering every pixel offset.



实验

1 採用的2个尺度的4X4的6种不同的haar-like(192 features)
2 Combine some different features by averaging multiple kernels




參考附件

1 Large Margin Method for Structured Learning
2 Support Vector Machine Learning for Interdependent and Structured Output Spaces 1的简短版
3 Structured Learning and Prediction in Computer Vision
4 统计学习方法-李航 7.4
5 Sequential minimal optimization: A fast algorithm for training support vector machines
















Struck: Structrued Output Tracking with Kernels 论文笔记的更多相关文章

  1. Struck: Structured Output Tracking with Kernels

    reference: Struck: Structured Output Tracking with Kernels hot topic: tracking-by-detection methods, ...

  2. Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记

    Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...

  3. 目标跟踪学习系列十:Struck:Structured Output Tracking with Kernels 代码调试

    本来想看完代码再具体的写的.可是有人问了就先贴出来吧! 代码调试中会遇到的一些的问题. 首先,你没有代码的话能够在这里下载:http://download.csdn.net/detail/u01219 ...

  4. Online Object Tracking: A Benchmark 论文笔记(转)

    转自:http://blog.csdn.net/lanbing510/article/details/40411877 有博主翻译了这篇论文:http://blog.csdn.net/roamer_n ...

  5. Online Object Tracking: A Benchmark 论文笔记

    Factors that affect the performance of a tracing algorithm 1 Illumination variation 2 Occlusion 3 Ba ...

  6. 论文笔记:目标追踪-CVPR2014-Adaptive Color Attributes for Real-time Visual Tracking

    基于自适应颜色属性的目标追踪 Adaptive Color Attributes for Real-Time Visual Tracking 基于自适应颜色属性的实时视觉追踪 3月讲的第一篇论文,个人 ...

  7. 论文笔记之:Visual Tracking with Fully Convolutional Networks

    论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...

  8. 论文笔记: Dual Deep Network for Visual Tracking

    论文笔记: Dual Deep Network for Visual Tracking  2017-10-17 21:57:08  先来看文章的流程吧 ... 可以看到,作者所总结的三个点在于: 1. ...

  9. 论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning

    论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning  2017-06-06  21: ...

随机推荐

  1. 【iOS开发必收藏】详解iOS应用程序内使用IAP/StoreKit付费、沙盒(SandBox)测试、创建测试账号流程!【2012-12-11日更新获取”产品付费数量等于0的问题”】

    转的别人的 看到很多童鞋问到,为什么每次都返回数量等于0?? 其实有童鞋已经找到原因了,原因是你在 ItunesConnect 里的 “Contracts, Tax, and Banking”没有完成 ...

  2. Android 获取系统短信内容

    //这里通过内容提供者获取系统短信内容 Uri uri = Uri.parse("content://sms/"); String[] projection = {"_i ...

  3. 【poj3070】矩阵乘法求斐波那契数列

    [题目描述] 我们知道斐波那契数列0 1 1 2 3 5 8 13…… 数列中的第i位为第i-1位和第i-2位的和(规定第0位为0,第一位为1). 求斐波那契数列中的第n位mod 10000的值. [ ...

  4. OA学习笔记-007-Dao层设计

    一. User, UserDao save(User user), update(), delete(), find(), ...Role, RoleDao save(Role role), upda ...

  5. 備份Sqlite DB到XML文件:

    转载请注明出处:http://blog.csdn.net/krislight 项目中遇到备份与还原App数据的需求,需要把DB数据备份到一个XML文件中,然后保存到SD卡上,还原的时候直接从XML文件 ...

  6. C++解析JSON之JsonCPP

    一.JSON简介 JSON全称为JavaScript ObjectNotation,它是一种轻量级的数据交换格式,易于阅读.编写.解析. JSON由两种基本结构构成: )"名称/值" ...

  7. ARP 实现

    ARP 实现 现在我们介绍一下arp的实现,内核版本2.6.24. [数据结构] 协议栈通过ARP协议获取到的网络上邻居主机的IP地址与MAC地址的对应关 系都会保存在这个表中,以备下次与邻居通讯时使 ...

  8. [LeetCode#277] Find the Celebrity

    Problem: Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there ma ...

  9. 老的acm & oj学习站点

    1.网易小鱼博客 http://gisyhy.blog.163.com/blog/#m=0&t=1&c=fks_087069086082087064085081082095085084 ...

  10. sql server 2008中id如何设为自增

    通过 IDENTITY 来设置 参数有2个,一个是“初始值” 一个是“增量”.默认情况下 INSERT 语句中,不能对 IDENTITY 的字段进行赋值. create table web_produ ...