HDU 2517 棋盘分割
题意:n刀切割棋盘
下面是8*8的棋盘,每个数字代表棋盘对应点的权值,问切割n刀后,每一块的和 的均方差最小是多少
均方差的公式需要先化简:
由上式得,均方差最小 显然是要 Xi^2 最小
d[k][x1][y1][x2][y2]代表棋盘从(x1,y1)->(x2,y2)已经切了k刀 获得的最小的平方和
用sum[i][j] 代表 从(1,1)点 到 (i,j)点的权值和
这样答案就是 dp[n][1][1][8][8]/n -(sum[8][8]/n)^2
用S[ (x1,y1) ,( x2,y2) ] 代表 这两点间的权值和
这里用递归dp
状态转移方程:
d[k][x1][y1][x2][y2]=
Min{ 横向切: d[k-1] +剩下未切部分的平方和,纵向切:d[k-1]+剩下未切部分的平方和 }
横向切的最优解就是 Min{ d[ k-1,(x1,y1) , ( i ,y2) ] + S[ (i +1,y1) , ( x2 ,y2) ] , d[ k-1,(i+1,y1) , ( x2 ,y2) ] + S[ (x1,y1) , ( i ,y2) ] } ( x1<= i <x2)
上面的意思就是: 在x=i处切一刀的最优解
同理可以容易推出纵向切法的dp方程
#include<stdio.h>
#include<math.h>
#include <string.h>
#define INF 1<<29
int map[9][9],sum[9][9];
int d[15][9][9][9][9];
inline int Min(int a,int b){return a>b?b:a;} int s(int x1,int y1,int x2,int y2){
int temp=sum[x2][y2]-sum[x1-1][y2]-sum[x2][y1-1]+sum[x1-1][y1-1]; return temp*temp;
} int dp(int k,int x1,int y1,int x2,int y2){
if(d[k][x1][y1][x2][y2]!=-1)return d[k][x1][y1][x2][y2];
if(k==1)return s(x1,y1,x2,y2);
int ans=INF,i;
for(i=x1;i<x2;i++)
{
ans=Min(dp(k-1,x1,y1,i,y2)+s(i+1,y1,x2,y2),ans);
ans=Min(dp(k-1,i+1,y1,x2,y2)+s(x1,y1,i,y2),ans);
}
for(i=y1;i<y2;i++)
{
ans=Min(dp(k-1,x1,y1,x2,i)+s(x1,i+1,x2,y2),ans);
ans=Min(dp(k-1,x1,i+1,x2,y2)+s(x1,y1,x2,i),ans);
} return d[k][x1][y1][x2][y2]=ans;
}
int main()
{
int n,i,j,k;
while(~scanf("%d",&n)){
memset(map,0,sizeof(map));
for(i=1;i<=8;i++)
for(j=1;j<=8;j++)
scanf("%d",&map[i][j]); memset(sum,0,sizeof(sum));
for(i=1;i<=8;i++)
for(j=1;j<=8;j++)
sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+map[i][j]; //得到sum数组 memset(d,-1,sizeof(d)); int ans=dp(n,1,1,8,8);
double aver=(double)sum[8][8]/(double)n;
double last=sqrt((double)ans/(double)n-aver*aver);
printf("%.3lf\n",last);
}
return 0;
}
HDU 2517 棋盘分割的更多相关文章
- HDU 2517 / POJ 1191 棋盘分割 区间DP / 记忆化搜索
题目链接: 黑书 P116 HDU 2157 棋盘分割 POJ 1191 棋盘分割 分析: 枚举所有可能的切割方法. 但如果用递归的方法要加上记忆搜索, 不能会超时... 代码: #include& ...
- POJ 1191 棋盘分割
棋盘分割 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11213 Accepted: 3951 Description 将一个 ...
- poj 1191 棋盘分割 动态规划
棋盘分割 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11457 Accepted: 4032 Description ...
- NOI 193棋盘分割.cpp
193:棋盘分割 查看 提交 统计 提问 总时间限制: 1000ms 内存限制: 65536kB 描述 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分 ...
- POJ 1191棋盘分割问题
棋盘分割问题 题目大意,将一个棋盘分割成k-1个矩形,每个矩形都对应一个权值,让所有的权值最小求分法 很像区间DP,但是也不能说就是 我们只要想好了一个怎么变成两个,剩下的就好了,但是怎么变,就是变化 ...
- 洛谷 P1436 棋盘分割 解题报告
P1436 棋盘分割 题目描述 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的两部分中的任意一块继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共 ...
- [NOI1999] 棋盘分割
COGS 100. [NOI1999] 棋盘分割 http://www.cogs.pro/cogs/problem/problem.php?pid=100 ★★ 输入文件:division.in ...
- poj1191 棋盘分割【区间DP】【记忆化搜索】
棋盘分割 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16263 Accepted: 5812 Description ...
- POJ 1191 棋盘分割 【DFS记忆化搜索经典】
题目传送门:http://poj.org/problem?id=1191 棋盘分割 Time Limit: 1000MS Memory Limit: 10000K Total Submission ...
随机推荐
- 分布式系统之CAP理论
任老师第一节主要讲了分布式系统实现时候面临的八个问题,布置的作业就是这个,查询CAP理论. 笔者初次接触分布式,所以本文主要是一个汇总. 一.CAP起源 CAP原本是一个猜想,2000年PODC大会的 ...
- [转载]MongoDB学习 (六):查询
本文地址:http://www.cnblogs.com/egger/archive/2013/06/14/3135847.html 欢迎转载 ,请保留此链接๑•́ ₃•̀๑! 本文将介绍操作符的使用 ...
- 浅谈HTTP响应拆分攻击
在本文中,我们将探讨何谓HTTP响应拆分以及攻击行为是怎样进行的.一旦彻底理解了其发生原理(该原理往往被人所误解),我们就可以探究如何利用响应拆分执行跨站点脚本(简称XSS).接下来自然就是讨论如果目 ...
- OpenStack项目列表
这个也是必须要熟悉的哟. ~~~~~~~~~~ OpenStack是一个美国国家航空航天局和Rackspace合作研发的,以Apache许可证授权,并且是一个自由软件和开放源代码项目.OpenStac ...
- SPRING IN ACTION 第4版笔记-第四章Aspect-oriented Spring-001-什么是AOP
一. Aspect就是把会在应用中的不同地方重复出现的非业务功能的模块化,比如日志.事务.安全.缓存 In software development, functions that span mult ...
- CDC 虚拟com口
现在很多电脑已经不带232了,特别是手提电脑.这使很多使用手提在外调试人员非常不方便.或许你可以买一条市面上usb转232转换线,但这些线抗干扰不是太好,在一些干扰大的地方会发生连接中断的问题,所以往 ...
- 《ArcGIS Engine+C#实例开发教程》第六讲 右键菜单添加与实现
原文:<ArcGIS Engine+C#实例开发教程>第六讲 右键菜单添加与实现 摘要:在这一讲中,大家将实现TOCControl控件和主地图控件的右键菜单.在AE开发中,右键菜单有两种实 ...
- XSD标准架构-----<xsd:element> 元素详解
声明一个元素. <element abstract = Boolean : false block = (#all | List of (extension | restriction ...
- FileSystemWatcher使用方法
FileSystemWatcher控件主要功能: 监控指定文件或目录的文件的创建.删除.改动.重命名等活动.可以动态地定义需要监控的文件类型及文件属性改动的类型. 1.常用的几个基本属性: (1) P ...
- Trigger Execution Sequence in Oracle Forms
Introduction ------------ This document lists the order in which triggers fire in Oracle Forms 4.5: ...