3851: 2048

Time Limit: 2 Sec  Memory Limit: 64 MB
Submit: 22  Solved: 9
[Submit][Status]

Description

Teacher Mai is addicted to game 2048. But finally he finds it's too hard to get 2048. So he wants to change the rule:
You are given some numbers. Every time you can choose two numbers
of the same value from them and merge these two numbers into their sum.
And these two numbers disappear meanwhile.
  
If we can get 2048 from a set of numbers with this operation, Teacher Mai think this multiset is good.
You have n numbers, A1,...,An. Teacher Mai ask you how many subsequences of A are good.
The number can be very large, just output the number modulo 998244353.
 

Input

There are multiple test cases, terminated by a line "0".
For each test case, the first line contains an integer n
(1<=n<=10^5), the next line contains n integers ai
(0<=ai<=2048).

Output

For each test case, output one line "Case #k: ans", where k is the
case number counting from 1, ans is the number module 998244353.

Sample Input

4
1024 512 256 256
4
1024 1024 1024 1024
5
1024 512 512 512 1
0

Sample Output

Case #1: 1
Case #2: 11
Case #3: 8

HINT

In the first case, we should choose all the numbers.
In the second case, all the subsequences which contain more than one number are good.
 
  sro卡常数orz。。。。。。我也不知道为什么,网上比我慢几倍的程序都能秒过。。。。
  题解什么的可以参见hdu4945,我用的是组合数,逆元什么的,具体来说,只有2^i的数是有用的(这个地方有点坑,如果用x==x&(-x)判定,则会把0算进去)然后我是枚举每一个数x选了多少个,顶多2048/x个,用组合数优化背包。但是这个办法还是很慢,经过面目全非的常数优化,八中2500ms过的,hdu就根本过不了了。
  这个方法实在太渣,优化后卡时过的,童鞋们最好用其他方法额。   
顺便总结一下这道题用的常数优化技巧:
  1. register 这次我实践证明register是有作用的
  2. [2][n]的二维数组改成两个数组。
  3. 数组下标索引改成指针。
  4. 如果会多次调用几个数的乘积,可以提前预处理出来。
  5. 改变for语句嵌套顺序,省略for内部的条件判断。
  6. 读入优化x*10可改成 (x<<3)+(x<<2)
  7. 少用取模才是终极目标。
/**************************************************************
Problem: 3851
User: mhy12345
Language: C++
Result: Accepted
Time:2520 ms
Memory:17536 kb
****************************************************************/ #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MOD 998244353
#define MAXN 510000
#define deal(x,y) \
(x)=((x)+(y))%MOD;
inline int nextInt()
{
register int x=;
register char ch;
while (ch=getchar(),ch<'' || ch>'');
while (x=(x<<)+(x<<)+ch-'',ch=getchar(),ch<='' && ch>='');
return x;
}
const int mod=MOD;
typedef long long qword;
qword pow_mod(qword x,qword y)
{
qword ret=;
while (y)
{
if (y&)ret=ret*x%MOD;
x=x*x%MOD;
y>>=;
}
return ret;
}
qword dp[][];
qword fact[MAXN];
int tot[];
qword inv[MAXN];
qword val[MAXN];
pair<int,int> pl[MAXN];
int topp=-;
int main()
{
//freopen("input.txt","r",stdin);
register int i,j,k,k2;
int x,y,z,n,m;
int nn;
fact[]=;
for (i=;i<MAXN;i++)
fact[i]=fact[i-]*i%MOD;
inv[]=;
for (i=;i<MAXN;i++)
inv[i]=pow_mod(fact[i],MOD-);
int cnt=;
register qword *dp1,*dp2;
register qword a=;
while (scanf("%d",&n),cnt++,n)
{
printf("Case #%d: ",cnt);
memset(dp[],,sizeof(dp[]));
memset(tot,,sizeof(tot));
dp[][]=;
for (i=;i<=n;i++)
{
x=nextInt();
tot[x]++;
}
int ttr=;
for (i=;i<=;i++)
if (!i || i!=(i&(-i)))
ttr+=tot[i];
int cnt=;
bool flag=false;
for (i=;i<=;i<<=,cnt^=flag)
{
memset(dp[cnt^],,sizeof(dp[cnt^]));
dp1=dp[cnt];
dp2=dp[cnt^];
flag=false;
if (!tot[i])continue;
flag=true;
for (j=;j<=tot[i];j++)
val[j]=*(fact+*(tot+i)) * *(inv+j)%MOD * *(inv+tot[i]-j)%MOD;
for (a=,j=/i+(%i!=);j<=tot[i];j++)
a=(a+ * (val+j))%MOD;
for (k=;k>=;k--)
if (dp1[k])
{
for (j=,k2=k;j<=tot[i] && k2<;j++,k2+=i)
deal(dp2[k2],*(dp1+k) * *(val+j));
qword &b=dp2[];
k2-=k;
for (;k2< && j<=tot[i];j++,k2+=i)
deal(b,*(dp1+k)* *(val+j));
if (j<=tot[i])
deal(b,*(dp1+k)*a);
}
}
printf("%lld\n",dp[cnt][]*pow_mod(,ttr)%MOD);
}
}

面目全非版

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MOD 998244353
#define MAXN 510000
#define deal(x,y) \
(x)=((x)+(y))%MOD;
inline int nextInt()
{
register int x=;
register char ch;
while (ch=getchar(),ch<'' || ch>'');
while (x=(x<<)+(x<<)+ch-'',ch=getchar(),ch<='' && ch>='');
return x;
}
const int mod=MOD;
typedef long long qword;
qword pow_mod(qword x,qword y)
{
qword ret=;
while (y)
{
if (y&)ret=ret*x%MOD;
x=x*x%MOD;
y>>=;
}
return ret;
}
qword dp[][];
qword fact[MAXN];
int tot[];
qword inv[];
pair<int,int> pl[MAXN];
int topp=-;
int main()
{
freopen("input.txt","r",stdin);
int i,j,k,x,y,z,n,m;
int k2;
int nn;
fact[]=;
for (i=;i<MAXN;i++)
fact[i]=fact[i-]*i%MOD;
inv[]=;
for (i=;i<MAXN;i++)
inv[i]=pow_mod(fact[i],MOD-);
int a1,a2;
int cnt=;
while (scanf("%d",&n),cnt++,n)
{
printf("Case #%d: ",cnt);
memset(dp,,sizeof(dp));
memset(tot,,sizeof(tot));
dp[][]=;
for (i=;i<=n;i++)
{
x=nextInt();
tot[x]++;
}
int ttr=;
for (i=;i<=;i++)
if (!i || i!=(i&(-i)))
ttr+=tot[i];
int cnt=;
bool flag=false;
for (i=;i<=;i<<=,cnt^=flag)
{
memset(dp[cnt^],,sizeof(dp[cnt^]));
flag=false;
if (!tot[i])continue;
flag=true;
qword a=;
for (j=/i+(%i!=);j<=tot[i];j++)
a=(a+inv[j]*inv[tot[i]-j])%MOD;
a=a*fact[tot[i]]%MOD;
for (k=;k>=;k--)
if (dp[cnt][k])
{
for (j=,k2=k;j<=tot[i] && k2<;j++,k2+=i)
deal(dp[cnt^][k2],dp[cnt][k]*fact[tot[i]]%MOD*inv[j]%MOD*inv[tot[i]-j]);
qword &b=dp[cnt^][];
k2-=k;
for (;k2< && j<=tot[i];j++,k2+=i)
deal(b,dp[cnt][k]*fact[tot[i]]%MOD*inv[j]%MOD*inv[tot[i]-j]);
if (j<=tot[i])
deal(dp[cnt^][],dp[cnt][k]*a);
}
}
printf("%lld\n",dp[cnt][]*pow_mod(,ttr)%MOD);
}
}

TLE版

bzoj 3851: 2048 dp优化的更多相关文章

  1. NOIP2015 子串 (DP+优化)

    子串 (substring.cpp/c/pas) [问题描述] 有两个仅包含小写英文字母的字符串 A 和 B.现在要从字符串 A 中取出 k 个 互不重 叠 的非空子串,然后把这 k 个子串按照其在字 ...

  2. LCIS tyvj1071 DP优化

    思路: f[i][j]表示n1串第i个与n2串第j个且以j结尾的LCIS长度. 很好想的一个DP. 然后难点是优化.这道题也算是用到了DP优化的一个经典类型吧. 可以这样说,这类DP优化的起因是发现重 ...

  3. HDU 4945 2048(DP)

    HDU 4945 2048 题目链接 题意:给定一个序列,求有多少个子序列能合成2048 思路:把2,4,8..2048这些数字拿出来考虑就能够了,其它数字不管怎样都不能參与组成.那么在这些数字基础上 ...

  4. 取数字(dp优化)

    取数字(dp优化) 给定n个整数\(a_i\),你需要从中选取若干个数,使得它们的和是m的倍数.问有多少种方案.有多个询问,每次询问一个的m对应的答案. \(1\le n\le 200000,1\le ...

  5. dp优化1——sgq(单调队列)

    该文是对dp的提高(并非是dp入门,dp入门者请先参考其他文章) 有时候dp的复杂度也有点大...会被卡. 这几次blog大多数会讲dp优化. 回归noip2017PJT4.(题目可以自己去百度).就 ...

  6. loj6171/bzoj4899 记忆的轮廊(期望dp+优化)

    题目: https://loj.ac/problem/6171 分析: 设dp[i][j]表示从第i个点出发(正确节点),还可以有j个存档点(在i点使用一个存档机会),走到终点n的期望步数 那么 a[ ...

  7. 常见的DP优化类型

    常见的DP优化类型 1单调队列直接优化 如果a[i]单调增的话,显然可以用减单调队列直接存f[j]进行优化. 2斜率不等式 即实现转移方程中的i,j分离.b单调减,a单调增(可选). 令: 在队首,如 ...

  8. 【学习笔记】动态规划—各种 DP 优化

    [学习笔记]动态规划-各种 DP 优化 [大前言] 个人认为贪心,\(dp\) 是最难的,每次遇到题完全不知道该怎么办,看了题解后又瞬间恍然大悟(TAT).这篇文章也是花了我差不多一个月时间才全部完成 ...

  9. Codevs 1305 Freda的道路(矩阵乘法 DP优化)

    1305 Freda的道路 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description Freda要到Rainbow的城堡去玩了.我们可以认 ...

随机推荐

  1. extjs6整合到web项目中

    最近有一个项目需要应用extjs作为前端界面,因此研究了一下如何将extjs 6引入到项目中.以下是操作步骤 extjs6下载地址 extjs 6有gpl版本的,下载地址https://www.sen ...

  2. modelsim仿真时让状态机波形显示状态的名字

    在使用Verilog编写有限状态机等逻辑的时候,状态机的各个状态通常以参数表示(如IDLE等).当使用ModelSim仿真的时候,状态机变量在wave窗口中以二进制编码的形式显示,如下面所示,这种显示 ...

  3. TCL 双引号和花括号的区别

    用了很一段时间的Modelsim,用TCL脚本仿真,开始注意起来它,看了些资料,有一个问题始终让我很困惑,那就是花括号 的用法,今天Google了一下,觉得有一点豁然了,记录一下.为了不让自己的翻译影 ...

  4. asp.net 开发问题:Web 服务器上的请求筛选被配置为拒绝该请求,因为内容长度超过配置的值。

    "Web 服务器上的请求筛选被配置为拒绝该请求,因为内容长度超过配置的值." 这个问题在开发需要上传文件的时候可能会遇到,今天遇到这个问题,百度过也有挺多的修改方法. 方法1: 修 ...

  5. (转)ASP.NET禁用刷新重复提交Backspace键

    在网页制作中,由于Backspace键可以回退到上一个网页,利用了缓存的数据,从而导致一些错误发生.浏览器的后退按钮使得我们能够方便地返回以前访问过的页面,它无疑非常有用.但有时候我们不得不关闭这个功 ...

  6. 20151212Jquery 工具函数代码备份

    $(function () { /*var str=' jquery '; alert(str); alert($.trim(str));*/ /*var arr=['张三','李四','王五','麻 ...

  7. IrisSkin4控件使用方法

    参考如下: 1. 将IrisSkin4.dll动态文件导入当前项目引用中.具体操作为:解决方案资源管理器->当前项目->引用->右键->添加引用,找到IrisSkin4.dll ...

  8. 搭建showslow:前端性能跑分及优化工具

    综述:showslow是一个开源的工具,集成并通过Yahoo yslow.google page speed.dynaTrace AJAX等工具监测网站各项性能指标,然后通过图表和排名展示出来. 1. ...

  9. 记一次ftp服务器错误 centOS 6.4 vsftpd 500 illegal port command

    这个错误是因为是主动模式的,应该改为被动模式 以下是操作过程: iptables中加 -A INPUT -p tcp -m state --state NEW -m tcp --dport 10221 ...

  10. docker 中搭建tomcat

    关于docker中tomcat的搭建,没有什么多说的,直接下载官方镜像 docker pull tomcat  (可能会下载到好几个镜像,就是tag不同,有知道为什么的可以告诉我) 然后我看的  ht ...