[BZOJ 1188] [HNOI2007] 分裂游戏 【博弈论|SG函数】
题目链接:BZOJ - 1188
题目分析
我们把每一颗石子看做一个单个的游戏,它的 SG 值取决于它的位置。
对于一颗在 i 位置的石子,根据游戏规则,它的后继状态就是枚举符合条件的 j, k。然后后继状态就是 j 与 k 这两个游戏的和。
游戏的和的 SG 值就是几个单一游戏的 SG 值的异或和。
那么还是根据 SG 函数的定义 , 即 SG(u) = mex(SG(v)) ,预处理求出每个位置的 SG 值。一个位置的 SG 值与它后面的位置有关,是取决于它是倒数第几个位置,那么我们预处理求出的 SG[i] 是指倒数第 i 个位置的 SG 值。
还有一个十分重要的性质,我们不需要考虑每个位置上石子的数量,只需要考虑数量的奇偶,因为如果有偶数个石子,那么这个位置的 SG 值会被异或到整个状态的 SG 中共偶数次,就会抵消,相当于没有。
奇数就是相当于偶数 + 1,因此只要异或一次即可。
组合游戏真是有许多神奇的性质Orz。
代码
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath> using namespace std; const int MaxN = 25, N = 21; int T, n, Mark_Index;
int A[MaxN], SG[MaxN], Mark[MaxN * MaxN]; void Prepare_SG() {
Mark_Index = 0;
memset(Mark, 0, sizeof(Mark));
for (int i = 1; i <= N; ++i) {
++Mark_Index;
for (int j = i - 1; j >= 1; --j)
for (int k = j; k >= 1; --k)
Mark[SG[j] ^ SG[k]] = Mark_Index;
for (int j = 0; j <= N * N; ++j) {
if (Mark[j] != Mark_Index) {
SG[i] = j; break;
}
}
}
} int main()
{
scanf("%d", &T);
Prepare_SG();
for (int Case = 1; Case <= T; ++Case) {
scanf("%d", &n);
for (int i = 1; i <= n; ++i) scanf("%d", &A[i]);
int Temp = 0, Tot = 0;
for (int i = 1; i <= n; ++i)
if (A[i] & 1) Temp ^= SG[n - i + 1];
for (int i = 1; i <= n; ++i) {
if (A[i] == 0) continue;
for (int j = i + 1; j <= n; ++j) {
for (int k = j; k <= n; ++k) {
if ((Temp ^ SG[n - i + 1] ^ SG[n - j + 1] ^ SG[n - k + 1]) != 0) continue;
++Tot;
if (Tot == 1) printf("%d %d %d\n", i - 1, j - 1, k - 1);
}
}
}
if (Tot == 0) printf("-1 -1 -1\n");
printf("%d\n", Tot);
}
return 0;
}
[BZOJ 1188] [HNOI2007] 分裂游戏 【博弈论|SG函数】的更多相关文章
- bzoj 1188 [HNOI2007]分裂游戏(SG函数,博弈)
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 733 Solved: 451[Submit][Status ...
- bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 973 Solved: 599[Submit][Status ...
- bzoj 1188 [HNOI2007]分裂游戏 SG函数 SG定理
[HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1394 Solved: 847[Submit][Status][Dis ...
- BZOJ 1188: [HNOI2007]分裂游戏(multi-nim)
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1386 Solved: 840[Submit][Status][Discuss] Descripti ...
- BZOJ 1188 [HNOI2007]分裂游戏
AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=1188 学习SG函数的过程中,我先看了一篇叫做 <2008-贾志豪-组合数学略述... ...
- bzoj 1188 : [HNOI2007]分裂游戏 sg函数
题目链接 给n个位置, 每个位置有一个小球. 现在两个人进行操作, 每次操作可以选择一个位置i, 拿走一个小球.然后在位置j, k(i<j<=k)处放置一个小球. 问你先进行什么操作会先手 ...
- BZOJ1188:[HNOI2007]分裂游戏(博弈论)
Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏.该游戏的规则试:共有n个瓶子,标号为0,1,2.....n-1,第i个瓶子中装有p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择3个 ...
- [2016北京集训试题6]魔法游戏-[博弈论-sg函数]
Description Solution 首先,每个节点上的权值可以等价于该节点上有(它的权的二进制位数+1)个石子,每次可以拿若干个石子但不能不拿. 然后就发现这和NIM游戏很像,就计算sg函数em ...
- BZOJ P1188 HNOI2007 分裂游戏——solution
题目描述: (<--这个) 组合游戏,——把每个石头看做一个游戏, Multi_game——消去i上的石子后,,k上的游戏又多了一个: 于是就套用multi_game的模型即可 求解SG函数时, ...
随机推荐
- Android 动画之RotateAnimation应用详解
android中提供了4中动画: AlphaAnimation 透明度动画效果 ScaleAnimation 缩放动画效果 TranslateAnimation 位移动画效果 RotateAnimat ...
- Delphi QQ表情的实现
Delphi QQ表情的实现 QQ表情描述 蓝框 提示信息 鼠标在这个表情上面 这个表情才动 可以增加表情 表情打包 单击这个表情插入表情 关闭本窗体 主要使用Webbrowsr来实现的 -- ...
- HTML5游戏开发技术基础整理
随着HTML5标准终于敲定.HTML5将有望成为游戏开发领域的的热门平台. HTML5游戏能够执行于包含iPhone系列和iPad系列在内的计算机.智能手机以及平板电脑上,是眼下跨平台应用开发的最佳实 ...
- iOS--日历事件的获取和添加
日历添加事件 EKEventStore* eventStore = [[EKEventStore alloc] init];//获取日历类 EKEvent *event = [EKEvent even ...
- Android(java)学习笔记201:网络图片浏览器的实现(ANR)
1.我们在Android下,实现使用http协议进行网络通信,请求网络数据.这里是获取网络上的图片信息,让它可以显示在手机上: 但是我们这个手机连接网络是很费时间,如果我们在主线程(UI线程)中写这个 ...
- Java使用poi对Execl简单操作_总结
poi是Apache组织给开发者提供一套操作office(Execl,Word,PowerPoint)等Java API,开发者通过Poi API可以快速的操作office办公软件,以上3篇博文只是一 ...
- Couchbase用的端口
文档首页: http://www.couchbase.com/documentation http://docs.couchbase.com/couchbase-manual-2.2/#prepara ...
- oracle 查看用户表数目,表大小,视图数目等
查看当前用户的缺省表空间 SQL>select username,default_tablespace from user_users; 查看当前用户的角色 SQL>select * fr ...
- 谈谈oracle中的临时表
--------------------创建临时表 临时保存从xml字符串解析来的数据--------------------------- 会话级别临时表SQL> create global ...
- 如何管理你的 Javascript 代码
今天不聊技术的问题,咱们来聊聊在前端开发中如何管理好自己的 Javascript 代码.首先,咱们先来说说一般都有哪些管理方式?我相信 seajs . requirejs 对于前端开发者而言都不陌 ...