NYOJ 116士兵杀敌(二) 树状数组
题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=116
士兵杀敌(一) 数组是固定的,所以可以用一个sum数组来保存每个元素的和就行,但是不能每次都加,因为那样会超时,查询次数太多。但是这个士兵杀敌(二)就不能用那个方法来解了,因为这个是动态的,中间元素的值可能会变化,所以引出一个新的东西来。刚开始想了一下,实在是没有想到方法,就去讨论区看了看,一看好像都说用树状数组,就去找树状数组的用法。
先上图,看着图解释容易理解点。
数组A是原数组中的元素,数组C是树状数组中的元素,图中C数组的元素组成为A中的某些元素之和,这些元素的个数取决于它的下标能被多少个2整除,像C[1] = A[1]; C[2] = A[1] + A[2]; C[3] = A[3]; C[4] = A[1] + A[2] + A[3] + [4] = C[2] + C[3]; ……这些个数可以写一个通式C[i] = A[n - 2^k + 1] + ……+A[i]; 其中k为 i 的二进制中从右往左数的 0 的个数 ,就像6有一个, 6可以写成 2 × 3, 所以C[6] = A[5] + A[6]; 所以可以定义一个函数来求这个数.
6的二进制为0110
5的二进制为0101
6^5 = 0011
6&(6^5) = 0010 = 十进制中的2
所以函数可以这么写
int lowbit(int N)//求n中有多少个能被2的多少次幂整除的,即2^k, 也就是树状数组的作用域
{
return N & (N ^ (N - ));
}
也可以写成
int lowbit(int N)//求n中有多少个能被2的多少次幂整除的,即2^k, 也就是树状数组的作用域
{
return N & (-N);
}
更改一个数的值, 就要更改次数在树状数组中的所有祖先,不过这个时间复杂度是O(logn); 下面是更改值(添加杀敌数)的函数
void add(int pos, int num)//添加新值到树状数组中
{
while(pos <= n)
{
tmp[pos] += num;
pos += lowbit(pos);
}
}
下面就是求和函数, 因为这种方法之所以快,是求他的最小树根节点的和, 最小树的个数为当前要求的n的二进制中为1的个数,即展开式中能写成不同2的幂指数的项数,
例如: 15 = 2^3 + 2^2 + 2^1 + 2^0; 所以n = 15时, 最小数有四个,求和的时间复杂度为O(logn);
int Sum(int N)//求前N个数的和
{
int sum = ;
while(N > )
{
sum += tmp[N];
N -= lowbit(N);
}
return sum;
}
关键就是这三步, 这三步搞明白了,基本上就不成问题了,但是,当时按照 杀敌(一) 中的思维,还统计了一个总数,那样不会快,反而会慢,所以直接求就行,下面是完整的代码
#include <stdio.h>
#include <string.h> int tmp[];
int n, k; int lowbit(int N)//求n中有多少个能被2的多少次幂整除的,即2^k, 也就是树状数组的作用域
{
return N & (-N);
} void add(int pos, int num)//添加新值到树状数组中
{
while(pos <= n)
{
tmp[pos] += num;
pos += lowbit(pos);
}
} int Sum(int N)//求前N个数的和
{
int sum = ;
while(N > )
{
sum += tmp[N];
N -= lowbit(N);
}
return sum;
} int main()
{
int a, b, temp;
char str[];
scanf("%d %d", &n, &k);
for(int i = ; i <= n; i++)
{
scanf("%d", &temp);
add(i, temp);
}
for(int i = ; i < k; i++)
{
scanf("%s %d %d", str, &a, &b);
if(strcmp(str, "QUERY") == )
printf("%d\n", Sum(b) - Sum(a - ));
else
add(a, b);
} return ;
}
NYOJ 116士兵杀敌(二) 树状数组的更多相关文章
- NYOJ 116 士兵杀敌二
士兵杀敌(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:5 描述 南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的. 小工是南将军手下的军师,南将军经常 ...
- NYOJ 116 士兵杀敌 (线段树,区间和)
题目链接:NYOJ 116 士兵杀敌 士兵杀敌(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:5 描写叙述 南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的 ...
- NYOJ 116 士兵杀敌(二)【线段树 单点更新】
题意:题意非常清楚: 策略:如题. 这道题就是简单的线段树应用,据说还能够用树状数组来做,等我学了之后在说吧. 代码: #include<stdio.h> #include<stri ...
- NYOJ 231 Apple Tree (树状数组)
题目链接 描述 There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow in t ...
- NYOJ 116 士兵杀敌(二) (树状数组)
题目链接 描述 南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的.小工是南将军手下的军师,南将军经常想知道第m号到第n号士兵的总杀敌数,请你帮助小工来回答南将军吧.南将军的某次询问之后 ...
- nyoj 116 士兵杀敌(二)【线段树单点更新+求和】
士兵杀敌(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:5 描述 南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的. 小工是南将军手下的军师,南将军经常 ...
- nyoj 116 士兵杀敌(二)(线段树、单点更新)
士兵杀敌(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:5 描述 南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的. 小工是南将军手下的军师,南将军经常 ...
- NYOJ 116 士兵杀敌(二)(二叉索引树)
http://acm.nyist.net/JudgeOnline/problem.php?pid=116 题意: 南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的. 小工是南将军手下的 ...
- hdoj-4417(做法二 树状数组离线解法,对所有的查询先保存进行排序后有序的查询) 好腻害!
#include<cstdio> #include<cstring> #include<algorithm> using namespace std;; ; str ...
随机推荐
- C++学习之DLL注入
#include<stdio.h> #include<Windows.h> #include<TlHelp32.h> //typedef unsigned long ...
- Animator Override Controllers 学习及性能测试
本文由博主(YinaPan)原创,转载请注明出处:http://www.cnblogs.com/YinaPan/p/Unity_AnimatorOverrideContorller.html The ...
- 『重构--改善既有代码的设计』读书笔记----Inline Temp
与Inline Method相同,有时候犹豫需要Extract Method,需要对一些临时变量进行内联,而这个往往是Replace Temp with Query的一部分.简单来说,当你看到这种 d ...
- CMake----if与option使用小记
在CMake中if语法比较简单,if后面括号中的参数随着CMake版本的推进,在else和endif中也可以不用写了. if(address) else() endif() 对于if语法,比较常用的就 ...
- javascript 中的nextSibling和previousSibling使用注意事项
JavaScript中的nextSibling和previousSibling和作用类似于jquery的next()和prev(),都是获取下一个/上一个同胞元素,如果下一个同级节点不存在,则此属性返 ...
- highCharts 图表统计控件使用方法
1.首先引用js文件 在引用上面文件时,保证已经引用了jquery.js文件.且位置在上面两个文件之前. 2. <div id="container" style=" ...
- ichartjs-基于html5的图表组件
大家可以到官网学习:ichartjs官网 带你进入官网:
- [Python笔记]第三篇:深浅拷贝、函数
本篇主要内容:深浅拷贝,自定义函数,三目运算,lambda表达式, 深浅拷贝 一.数字和字符串 对于 数字 和 字符串 而言,赋值.浅拷贝和深拷贝无意义,因为其永远指向同一个内存地址. import ...
- c程序代码的内存布局(学好C的基础)
一个程序本质上都是由 BSS 段.data段.text段三个组成的.这样的概念在当前的计算机程序设计中是很重要的一个基本概念,而且在嵌入式系统的设计中也非常重要,牵涉到嵌入式系统运行时的内存大小分配, ...
- lua curl动态链接库编译安装(二)
下面再介绍一下lua-curl中的lua-curl-0.2.tar.gz版本的安装方法,可能对于一般的人来说这个很简单,但是对于我们这些菜鸟来说就不一样了: # wget http://files.l ...