一般而言,分配给进程的内存有四个概念上不同的区域,分别为:代码段、数据段、堆和栈,其中数据段又可以细分为初始化为非零的数据和初始化为零的数据。如下图所示:

1、栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。
2、堆区(heap) — 一般由程序员分配释放 , 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表。
3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域, 未初始化的全局变量和未初始化的静态变量在相邻的另一块区域(BSS)。 - 程序结束后由系统释放
4、文字常量区 — 常量字符串就是放在这里的。 程序结束后由系统释放
5、程序代码区— 存放函数体的二进制代码。

-------------------

| 程序栈              |----------高地址--〉低地址

-------------------

| 堆                     |----------向上增长

-------------------

| BSS                 |----------数据段

| 全局和静态变量 |

------------------- ----------低地址

| 可执行代码       |----------代码段

-------------------

可执行指令放在代码段中,任何时刻,内存中只有一份相同程序的指令拷贝,多个实例共享这些代码。

初始化为非零的静态数据和全局数据存放在数据段中,运行相同程序的每个进程,有自己的数据段。

初始化为零的全局数据和静态分配数据存放在进程的BSS区域中,每个运行的进程都有自己的BSS,程序运行的时候,将数据放到数据段中,由此可知,只有初 始化为非零的变量才占用空间,所以对于类似static int ss[1024];这样的数组自动用0来填充,它占的空间很小。

堆,动态内存来自于堆,即:通过malloc得到的空间,通常情况下,堆是向上增长的,即:后面分配的地址比前面的地址在数值上大一些。

栈,分配本地变量的地方,函数参数、函数的返回值和返回地址也放在栈空间中,需要特别注意的是,当函数返回后,存储在栈空间中的函数变量“自动消失”,空间被其他函数使用。栈空间是向下增长的。

物理内存和虚拟内存

要理解内存在程序中是如何分配的,首先需要理解如何将内存从操作系统分配给程序。计算机上的每一个进程都认为自己可以访问所有的物理内存。显然,由于同时在运行多个程序,所以每个进程不可能拥有全部内存。实际上,这些进程使用的是 虚拟内存。

只 是作为一个例子,让我们假定您的程序正在访问地址为 629 的内存。不过,虚拟内存系统不需要将其存储在位置为 629 的 RAM 中。实际上,它甚 至可以不在 RAM 中 —— 如果物理 RAM 已经满了,它甚至可能已经被转移到硬盘上!由于这类地址不必反映内存所在的物理位置,所以它们被称为虚 拟内存。操作系统维持着一个虚拟地址到物理地址的转换的表,以便计算机硬件可以正确地响应地址请求。并且,如果地址在硬盘上而不是在 RAM 中,那么操 作系统将暂时停止您的进程,将其他内存转存到硬盘中,从硬盘上加载被请求的内存,然后再重新启动您的进程。这样,每个进程都获得了自己可以使用的地址空 间,可以访问比您物理上安装的内存更多的内存。

在 32-位 x86 系统上,每一个进程可以访问 4 GB 内存。现在,大部分人的系统上并没有 4 GB 内存,即使您将 swap 也算上, 每个进程所使用的内存也肯定少于 4 GB。因此,当加载一个进程时,它会得到一个取决于某个称为 系统中断点(system break)的 特定地址的初始内存分配。该地址之后是未被映射的内存 —— 用于在 RAM 或者硬盘中没有分配相应物理位置的内存。因此,如果一个进程运行超出了它初 始分配的内存,那么它必须请求操作系统“映射进来(map in)”更多的内存。(映射是一个表示一一对应关系的数学术语 —— 当内存的虚拟地址有一个 对应的物理地址来存储内存内容时,该内存将被映射。)

1、内存分配方面:

堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。

栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。

2、申请方式方面:

堆:需要程序员自己申请,并指明大小。在c中malloc函数如p1 = (char *)malloc(10);在C++中用new运算符,但是注意p1、p2本身是在栈中的。因为他们还是可以认为是局部变量。

栈:由系统自动分配。 例如,声明在函数中一个局部变量 int b;系统自动在栈中为b开辟空间。

3、系统响应方面:

堆:操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表 中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样代码中的delete语句才能正确的 释放本内存空间。另外由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。

栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。

4、大小限制方面:

堆:是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。

栈:在Windows下, 栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是固定 的(是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。

5、效率方面:

堆:是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便,另外,在WINDOWS下,最好的方式是用 VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度快,也最灵活。

栈:由系统自动分配,速度较快。但程序员是无法控制的。

6、存放内容方面:

堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。

栈:在函数调用时第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址然后是函数的各个参数,在大多数的C编译器中,参数是由 右往左入栈,然后是函数中的局部变量。 注意: 静态变量是不入栈的。当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续 运行。

7、存取效率方面:

堆:char *s1 = "Hellow Word";是在编译时就确定的;

栈:char s1[] = "Hellow Word"; 是在运行时赋值的;用数组比用指针速度要快一些,因为指针在底层汇编中需要用edx寄存器中转一下,而数组在栈上直接读取。

C内存管理的更多相关文章

  1. .NET基础拾遗(1)类型语法基础和内存管理基础

    Index : (1)类型语法.内存管理和垃圾回收基础 (2)面向对象的实现和异常的处理 (3)字符串.集合与流 (4)委托.事件.反射与特性 (5)多线程开发基础 (6)ADO.NET与数据库开发基 ...

  2. PHP扩展-生命周期和内存管理

    1. PHP源码结构 PHP的内核子系统有两个,ZE(Zend Engine)和PHP Core.ZE负责将PHP脚本解析成机器码(也成为token符)后,在进程空间执行这些机器码:ZE还负责内存管理 ...

  3. linux2.6 内存管理——逻辑地址转换为线性地址(逻辑地址、线性地址、物理地址、虚拟地址)

    Linux系统中的物理存储空间和虚拟存储空间的地址范围分别都是从0x00000000到0xFFFFFFFF,共4GB,但物理存储空间与虚拟存储空间布局完全不同.Linux运行在虚拟存储空间,并负责把系 ...

  4. linux2.6 内存管理——概述

    在紧接着相当长的篇幅中,都是围绕着Linux如何管理内存进行阐述,在内核中分配内存并不是一件非常容易的事情,因为在此过程中必须遵从内核特定的状态约束.linux内存管理建立在基本的分页机制基础上,在l ...

  5. Objective-C内存管理之引用计数

    初学者在学习Objective-c的时候,很容易在内存管理这一部分陷入混乱状态,很大一部分原因是没有弄清楚引用计数的原理,搞不明白对象的引用数量,这样就当然无法彻底释放对象的内存了,苹果官方文档在内存 ...

  6. Quartz2D内存管理

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "PingFang SC"; color: #239619 } p.p2 ...

  7. 浅谈Linux内存管理机制

    经常遇到一些刚接触Linux的新手会问内存占用怎么那么多?在Linux中经常发现空闲内存很少,似乎所有的内存都被系统占用了,表面感觉是内存不够用了,其实不然.这是Linux内存管理的一个优秀特性,在这 ...

  8. linux内存管理

    一.Linux 进程在内存中的数据结构 一个可执行程序在存储(没有调入内存)时分为代码段,数据段,未初始化数据段三部分:    1) 代码段:存放CPU执行的机器指令.通常代码区是共享的,即其它执行程 ...

  9. cocos2d-x内存管理

    Cocos2d-x内存管理 老师让我给班上同学讲讲cocos2d-x的内存管理,时间也不多,于是看了看源码,写了个提纲和大概思想 一.   为什么需要内存管理 1. new和delete 2. 堆上申 ...

  10. Swift中的可选链与内存管理(干货系列)

    干货之前:补充一下可选链(optional chain) class A { var p: B? } class B { var p: C? } class C { func cm() -> S ...

随机推荐

  1. 常用ASP函数的封装

    做ASP开发常常需要用到一些小功能,这些功能通常我们都会封装成函数来使用,本教程提供了许多我们经常用到的ASP函数. <% '所有功能函数名如下: ' StrLength(str) 取得字符串长 ...

  2. poj2594 (最小路径覆盖 + floyd)

    题目链接  http://poj.org/problem?id=2594) 题目大意: 一个有向图中, 有若干条连接的路线, 问最少放多少个机器人,可以将整个图上的点都走过. 最小路径覆盖问题. 分析 ...

  3. Thread多线程stopSleep顺序问题

    今天呢,学习了javase多线程,里面的睡眠sleep问题有点困扰: public class Thread_06_stopSleep{ public static void main(String[ ...

  4. Android笔记之adb命令应用实例1(手机端与PC端socket通讯下)

    通过adb和Android通讯需要引用adb相关的组件到项目中,分别为:adb.exe,AdbWinApi.dll,AdbWinUsbApi.dll. 可以在XXX\sdk\platform-tool ...

  5. Nwjs从入门到精通 菜鸟实践笔记【1】

    最近公司有想使用Nw来开发浏览器的想法,自己一直学的PHP,在网上并没有找到太多的相关资料,所以,就自己摸索着撸一条自学笔记: 当然呢,这里记录的都是我自己学习中遇到的问题,以及收获,希望通过自己的分 ...

  6. npm:Node.js的软件包管理器

    npm https://www.npmjs.com/ 2016-08-03

  7. Oracle if else if for case

    ------------------游标+for+if else if DECLARE cursor s_cursor is SELECT * from emp;--定义游标 begin for r ...

  8. html标签对应的英文原文

    标签 对应英文 说明 <!--> / 注释 <!DOCTYPE> document type 文档类型 <a> anchor 超链接 <abbr> ab ...

  9. 关于WPF中Popup控件的小记

    在wpf开发中,常需要在鼠标位置处弹出一个“提示框”(在此就以“提示框”代替吧),通过“提示框”进行信息提示或者数据操作,如果仅仅是提示作用,使用ToolTip控件已经足够,但是有些是需要在弹出的框中 ...

  10. JSON对象的stringify()和parse()方法

    1.stringify() ---- JavaScript对象序列化为JSON字符串 eg1. var book = {title: 'JS', authors: ['Van'], edition:3 ...