在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录。
据百度百科介绍:
编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数,如果它们的距离越大,说明它们越是不同。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
  例如将kitten一字转成sitting:
  sitten (k→s)
  sittin (e→i)
  sitting (→g)
  俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。因此也叫Levenshtein Distance。
例如

  • 如果str1="ivan",str2="ivan",那么经过计算后等于 0。没有经过转换。相似度=1-0/Math.Max(str1.length,str2.length)=1
  • 如果str1="ivan1",str2="ivan2",那么经过计算后等于1。str1的"1"转换"2",转换了一个字符,所以距离是1,相似度=1-1/Math.Max(str1.length,str2.length)=0.8

应用  DNA分析
  拼字检查
  语音辨识
  抄袭侦测
感谢大石头在评论中给出一个很好的关于此方法应用的连接 补充在此:
小规模的字符串近似搜索,需求类似于搜索引擎中输入关键字,出现类似的结果列表,文章连接:【算法】字符串近似搜索
算法过程

  • str1或str2的长度为0返回另一个字符串的长度。 if(str1.length==0) return str2.length; if(str2.length==0) return str1.length;
  • 初始化(n+1)*(m+1)的矩阵d,并让第一行和列的值从0开始增长。
  • 扫描两字符串(n*m级的),如果:str1 == str2[j],用temp记录它,为0。否则temp记为1。然后在矩阵d[i,j]赋于d[i-1,j]+1 、d[i,j-1]+1、d[i-1,j-1]+temp三者的最小值。
  • 扫描完后,返回矩阵的最后一个值d[n][m]即是它们的距离。

计算相似度公式:1-它们的距离/两个字符串长度的最大值。

为了直观表现,我将两个字符串分别写到行和列中,实际计算中不需要。我们用字符串“ivan1”和“ivan2”举例来看看矩阵中值的状况:
1、第一行和第一列的值从0开始增长

    i v a n 1
  0 1 2 3 4 5
i 1          
v 2          
a 3          
n 4          
2 5          

2、i列值的产生 Matrix[i - 1, j] + 1 ; Matrix[i, j - 1] + 1   ;    Matrix[i - 1, j - 1] + t

    i v a n 1
  0+t=0 1+1=2 2 3 4 5
i 1+1=2 取三者最小值=0        
v 2 依次类推:1        
a 3 2        
n 4 3        
2 5 4        

3、V列值的产生

    i v a n 1
  0 1 2      
i 1 0 1      
v 2 1 0      
a 3 2 1      
n 4 3 2      
2 5 4 3      

依次类推直到矩阵全部生成

    i v a n 1
  0 1 2 3 4 5
i 1 0 1 2 3 4
v 2 1 0 1 2 3
a 3 2 1 0 1 2
n 4 3 2 1 0 1
2 5 4 3 2 1 1

最后得到它们的距离=1
相似度:1-1/Math.Max(“ivan1”.length,“ivan2”.length) =0.8

转载自:http://www.sigvc.org/bbs/forum.php?mod=viewthread&tid=981

字符串相似度算法(编辑距离算法 Levenshtein Distance)的更多相关文章

  1. [Irving]字符串相似度-字符编辑距离算法(c#实现)

    编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字 ...

  2. 扒一扒编辑距离(Levenshtein Distance)算法

    最近由于工作需要,接触了编辑距离(Levenshtein Distance)算法.赶脚很有意思.最初百度了一些文章,但讲的都不是很好,读起来感觉似懂非懂.最后还是用google找到了一些资料才慢慢理解 ...

  3. Java 比较两个字符串的相似度算法(Levenshtein Distance)

    转载自: https://blog.csdn.net/JavaReact/article/details/82144732 算法简介: Levenshtein Distance,又称编辑距离,指的是两 ...

  4. 编辑距离算法(Levenshtein)

    编辑距离定义: 编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数. 许可的编辑操作包括:将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如 ...

  5. Go 实现字符串相似度计算函数 Levenshtein 和 SimilarText

    [转]http://www.syyong.com/Go/Go-implements-the-string-similarity-calculation-function-Levenshtein-and ...

  6. 字符串相似度算法(编辑距离算法 Levenshtein Distance)(转)

    在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个 ...

  7. 用C#实现字符串相似度算法(编辑距离算法 Levenshtein Distance)

    在搞验证码识别的时候需要比较字符代码的相似度用到"编辑距离算法",关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Dist ...

  8. [转]字符串相似度算法(编辑距离算法 Levenshtein Distance)

    转自:http://www.sigvc.org/bbs/forum.php?mod=viewthread&tid=981 http://www.cnblogs.com/ivanyb/archi ...

  9. 字符串相似度算法——Levenshtein Distance算法

    Levenshtein Distance 算法,又叫 Edit Distance 算法,是指两个字符串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一 ...

随机推荐

  1. Json-lib - java.util.Date 转换问题

    使用 JSON-lib 将 java.util.Date 对象直接转换成 JSON 字符串时,得到的通常不是想要格式: System.out.println(JSONSerializer.toJSON ...

  2. ResourceManager高可用配置

    ResourceManager高可用配置 1. yarn-site.xml配置 <property> <name>yarn.resourcemanager.cluster-id ...

  3. 【MySQL】MySQL中针对大数据量常用技术_创建索引+缓存配置+分库分表+子查询优化(转载)

    原文地址:http://blog.csdn.net/zwan0518/article/details/11972853 目录(?)[-] 一查询优化 1创建索引 2缓存的配置 3slow_query_ ...

  4. 【我们都爱Paul Hegarty】斯坦福IOS8公开课个人笔记19 为Demo添加手势

    在这一话中我们将应用上一话学到的知识来为Demo添加手势识别,首先添加一个缩放的功能,其次添加一个拖动功能,使得小人的表情可以随着我们的手指改变. 首先来添加一个缩放手势的识别器,我们来到FaceVi ...

  5. CSS多行文字截断

    有时候容器的宽度是固定的,但要显示的文字有点多,就需要将多余的文字隐藏,而且为了表示还有字没有显示,用省略号表示. 类似这样: 单行文字 单行文字截断比较明显: .truncate { width: ...

  6. Java编程思想读书笔记--第14章类型信息

    7.动态代理 代理是基本的设计模式之一,它是你为了提供额外的或不同的操作,而插入的用来代替“实际”对象的对象.这些操作通常涉及与“实际”对象的通信,因此代理通常充当着中间人的角色. 什么是代理模式? ...

  7. Java实战之03Spring-01Spring概述

    一.Spring概述 1.Spring是什么? Spring是分层的Java SE/EE应用 full-stack轻量级开源框架,以IoC(Inverse Of Control:反转控制)和AOP(A ...

  8. 九度OJ 1480 最大上升子序列和 -- 动态规划

    题目地址:http://ac.jobdu.com/problem.php?pid=1480 题目描述: 一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列 ...

  9. DevTools:Chrome 内置调试工具

    DevTools:Chrome 内置调试工具 2016-08-29 https://developers.google.com/web/tools/chrome-devtools

  10. spring 中的<aop:advisor>和<aop:aspect>的区别

    在AOP中有几个概念: — 方面(Aspect):一个关注点的模块化,这个关注点实现可能另外横切多个对象.事务管理是J2EE应用中一个很好的横切关注点例子.方面用Spring的Advisor或拦截器实 ...