题目:

Given n points on a 2D plane, find the maximum number of points that lie on the same straight line.

链接: http://leetcode.com/problems/max-points-on-a-line/

题解:

这道题是旧时代的残党,LeetCode大规模加新题之前的最后一题,新时代没有可以载你的船。要速度解决此题,之后继续刷新题。

主要思路是,对每一个点求其于其他点的斜率,放在一个HashMap中,每计算完一个点,尝试更新global max。

要注意的一些地方是 -

  • 跳过当前点
  • 处理重复
  • 计算斜率的时候使用double
  • 保存斜率时,第一次要保存2个点,并非1个
  • 假如map.size() = 0, 这时尝试用比较max和 duplicate + 1来更新max

Time Complexity - O(n2), Space Complexity - O(n)

/**
* Definition for a point.
* class Point {
* int x;
* int y;
* Point() { x = 0; y = 0; }
* Point(int a, int b) { x = a; y = b; }
* }
*/
public class Solution {
public int maxPoints(Point[] points) {
if(points == null || points.length == 0)
return 0;
HashMap<Double, Integer> map = new HashMap<>();
int max = 1; for(int i = 0; i < points.length; i++) { //for each point, find out slopes to other points
map.clear();
int duplicate = 0; //dealing with duplicates for(int j = 0; j < points.length; j++) {
if(j == i)
continue;
if(points[i].x == points[j].x && points[i].y == points[j].y) {
duplicate++;
continue;
} double slope = (double)(points[j].y - points[i].y) / (double)(points[j].x - points[i].x); if(map.containsKey(slope)) {
map.put(slope, map.get(slope) + 1);
} else
map.put(slope, 2);
} if(map.size() > 0) {
for(int localMax : map.values())
max = Math.max(max, localMax + duplicate);
} else
max = Math.max(max, duplicate + 1);
} return max;
}
}

二刷:

又做到了这一题。题目很短,很多东西没有说清楚。比如假如这n个点中有重复,这重复的点我们也要算在结果里。比如[0, 0][0, 0]这是两个点。

这回用的方法依然是双重循环,使用一个Map<Double, Integer>来记录每个点到其他点的斜率slope,然后每统计完一个点,我们尝试更新一下globalMax。这里有几点要注意:

  1. 有重复点的情况,这时候我们用一个整数dupPointNum来记录,并且跳过后面的运算
  2. 斜率
    1. 当点p1.x == p2.x时这时我们要设置slope = 0.0,否则map里可能会出现-0.0和0.0两个key
    2. 当点p1.y == p2.y的时候,我们要设置slope = Double.POSITIVE_INFINITY,否则map里可能出现Double.POSITIVE_INFINITY或者Double.NAGETIVE_INFINITY
    3. 其他情况我们可以使用直线的两点式方程算出斜率slope = (double)(p1.y - p2.y) / (p1.x - p2.x)
  3. 计算完一个点之后,我们遍历Map的value()集,跟globalMax比较,尝试更新

有意思的一点是Double.NaN虽然不等于Double.NaN,即(Double.NaN == Double.NaN)返回false。但作为map的key来说却能在查找时返回true,所以2.2也可以设置slope = Double.NaN.

Java:

Time Complexity - O(n2), Space Complexity - O(n)

/**
* Definition for a point.
* class Point {
* int x;
* int y;
* Point() { x = 0; y = 0; }
* Point(int a, int b) { x = a; y = b; }
* }
*/
public class Solution {
public int maxPoints(Point[] points) {
if (points == null || points.length == 0) return 0;
Map<Double, Integer> map = new HashMap<>(points.length);
int max = 0, len = points.length; for (int i = 0; i < len; i++) {
map.clear();
int dupPointNum = 0;
for (int j = i + 1; j < len; j++) {
if (points[i].x == points[j].x && points[i].y == points[j].y) {
dupPointNum++;
continue;
}
double slope = 0.0;
if (points[j].y == points[i].y) slope = 0.0;
else if (points[j].x == points[i].x) slope = Double.POSITIVE_INFINITY;
else slope = (double)(points[j].y - points[i].y) / (points[j].x - points[i].x); if (map.containsKey(slope)) map.put(slope, map.get(slope) + 1);
else map.put(slope, 2);
}
max = Math.max(max, dupPointNum + 1);
for (int count : map.values()) max = Math.max(max, count + dupPointNum);
}
return max;
}
}

Update:

加入了排序去重,速度更快了一些。

/**
* Definition for a point.
* class Point {
* int x;
* int y;
* Point() { x = 0; y = 0; }
* Point(int a, int b) { x = a; y = b; }
* }
*/
public class Solution {
public int maxPoints(Point[] points) {
if (points == null || points.length == 0) return 0;
Arrays.sort(points, (Point p1, Point p2)-> (p1.x != p2.x) ? p1.x - p2.x : p1.y - p2.y);
Map<Double, Integer> map = new HashMap<>(points.length);
int max = 0, len = points.length; for (int i = 0; i < len; i++) {
if (i > 0 && points[i].x == points[i - 1].x && points[i].y == points[i - 1].y) continue;
map.clear();
int dupPointNum = 0;
for (int j = i + 1; j < len; j++) {
if (points[i].x == points[j].x && points[i].y == points[j].y) {
dupPointNum++;
continue;
}
double slope = 0.0;
if (points[j].y == points[i].y) slope = 0.0;
else if (points[j].x == points[i].x) slope = Double.POSITIVE_INFINITY;
else slope = (double)(points[j].y - points[i].y) / (points[j].x - points[i].x); if (map.containsKey(slope)) map.put(slope, map.get(slope) + 1);
else map.put(slope, 2);
}
max = Math.max(max, dupPointNum + 1);
for (int count : map.values()) max = Math.max(max, count + dupPointNum);
}
return max;
}
}

Reference:

https://leetcode.com/discuss/72457/java-27ms-solution-without-gcd

https://leetcode.com/discuss/57464/accepted-java-solution-easy-to-understand

149. Max Points on a Line的更多相关文章

  1. 【LeetCode】149. Max Points on a Line

    Max Points on a Line Given n points on a 2D plane, find the maximum number of points that lie on the ...

  2. [leetcode]149. Max Points on a Line多点共线

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

  3. Java for LeetCode 149 Max Points on a Line

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

  4. 149. Max Points on a Line *HARD* 求点集中在一条直线上的最多点数

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

  5. leetcode 149. Max Points on a Line --------- java

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

  6. 149. Max Points on a Line同一条线上的最多点数

    [抄题]: Given n points on a 2D plane, find the maximum number of points that lie on the same straight ...

  7. 149 Max Points on a Line 直线上最多的点数

    给定二维平面上有 n 个点,求最多有多少点在同一条直线上. 详见:https://leetcode.com/problems/max-points-on-a-line/description/ Jav ...

  8. [LeetCode] 149. Max Points on a Line 共线点个数

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

  9. [LC] 149. Max Points on a Line

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

随机推荐

  1. 配置android source 在ubuntu中编译环境

    在Ubuntu中可以配置 android source 编译环境,推荐使用最新的64位的Ubuntu  LTS(Long Time Support); 1.安装JDK. AOSP主分支代码需要java ...

  2. linux shell if参数

    shell 编程中使用到得if语句内判断参数 –b 当file存在并且是块文件时返回真 -c 当file存在并且是字符文件时返回真 -d 当pathname存在并且是一个目录时返回真 -e 当path ...

  3. oc语言学习之基础知识点介绍(三):类方法、封装以及继承的介绍

    一.类方法的使用 /* 像我们之前学的方法,必须先实例化这个类的对象才能调用这个方法,类方法不用实例化对象,直接调用这个方法. 之前学的方法调用的语法: [对象名 方法名]; //对象方法 类方法: ...

  4. Effective C++ 沉思录

    1.视C++是一个联邦语言.由C,Object-Oriented C++,Templete C++,和STL组成.其中面对不同的语言,采用不同的规约这样编程效率会提高很多.例如C和STL 都是有C-S ...

  5. 使用netbeans 搭建 JSF+SPRING 框架

    spring版本使用4,jsf版本2.2 jsf的配置文件faces-config.xml <?xml version='1.0' encoding='UTF-8'?> <faces ...

  6. Swift学习的新工具---REPL

    从xcode6.1开始,苹果官方提供了一个新的辅助开发swift的工具,即repl(read eval print loop) OS X Yosemite系统下,打开终端应用程序,输入swift: 如 ...

  7. ThinkPHP3.2 加载过程(一)

    加载过程(官方介绍) : 用户URL请求 调用应用入口文件(通常是网站的index.php) 载入框架入口文件(ThinkPHP.php) 记录初始运行时间和内存开销 系统常量判断及定义 载入框架引导 ...

  8. <<深入Java虚拟机>>-虚拟机类加载机制-学习笔记

    类加载的时机 遇到new.getstatic.putstatic或invokestatic这4个字节码指令时,如果类没有进行过初始化,则需要先触发其初始化.生成这4条指令最常见的Java场景是:使用n ...

  9. redis 常用操作命令

    操作相关的命令连接 quit:关闭连接(connection)auth:简单密码认证 持久化 save:将数据同步保存到磁盘bgsave:将数据异步保存到磁盘lastsave:返回上次成功将数据保存到 ...

  10. top每个参数的意义

    上图来源于本人虚拟机,作为每个参数解释的参考 10:32:20:现在的时间 up 1 min : 服务器运行的时长 1 user:现在只有1个用户登录 load average: 0.74, 0.25 ...