1066. Root of AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print ythe root of the resulting AVL tree in one line.
Sample Input 1:
5
88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7
88 70 61 96 120 90 65
Sample Output 2:
88 =====================================================
简单的平衡树创建,值得注意的地方是 在插入的时候 为了保证树的平衡而进行的旋转 ---------------src--------------------
#include <cstdio>
#include <stdlib.h> #define max(a,b) ((a>b)?(a):(b))
typedef struct AvlNode
{
int data ;
struct AvlNode *left ;
struct AvlNode *right ;
int height ; }AvlNode ; int height ( AvlNode *t )
{
return t == NULL ? - : t->height;
} void LLRotate ( AvlNode *& t ) //左左 对应的情况是 旋转节点的左孩子 代替传入节点,即 传入节点的左子树上面 有新增节点 为了保持平衡 需要向右单旋转
{
AvlNode *tmp = t->left ;
t->left = tmp->right ;
tmp->right = t ;
tmp->height = max(height(tmp->left) , height(tmp->right) )+;
t->height = max (height(t->left) , height(t->right )) + ;
t = tmp ;
}
void RRRotate ( AvlNode *& t )//右右 对应的情况是 传入节点的右孩子 在旋转之后 代替传入节点, 即 传入节点的右子树上面有新增节点 需要 向左单旋转
{
AvlNode *tmp = t->right ; t->right = tmp->left ;
tmp->left = t ; tmp->height = max ( height ( tmp->left) , height ( tmp->right ) ) + ;
t->height = max ( height(t->left) , height(t->right ) )+ ; t = tmp ;
} void RLRotate ( AvlNode *& t )// 对应 传入节点的 右孩子的 左子树 有新增节点,先将 右孩子向右单向旋转,使右孩子的左右子树平衡,然后 向左单向旋转 传入节点 是传入节点的左右子树达到平衡
{
LLRotate( t->right) ; RRRotate( t ) ;
} void LRRotate ( AvlNode *& t )//对应传入节点 的左孩子的 右子树上面 有新增节点, 先将 左孩子 向左 单向旋转,是的左孩子的左右子树平衡,
//然后 向右单方向旋转 传入节点 使得 传入节点 的左右子树达到平衡
{
RRRotate( t->left) ;
LLRotate( t ) ; } //由于 生成AVL 树的时候 , 需要动态生成, 所以 保证 传入的指针参数所指向的实体 在 函数中的变化是 被记录的,所以 需要使用引用符号 ‘&’
void insert ( const int &x , AvlNode *&t )
{
if ( t == NULL )
{
t = (AvlNode*)malloc(sizeof(AvlNode)) ;
t->data = x ;
t->height = ;
t->left = t->right = NULL ;
}
else if ( x < t->data )
{
insert ( x , t->left ) ; if ( height( t->left ) - height( t->right ) == )
if ( x < t->left->data )
LLRotate( t ) ;
else
LRRotate( t ) ; } else if ( t->data < x )
{
insert ( x , t->right ) ; if ( height( t->right ) - height ( t->left) == )
if ( x > t->right->data )
RRRotate( t ) ;
else
RLRotate( t ) ; } else
; t->height = max( height ( t->left ) , height(t->right)) + ;
} int main ( void )
{
AvlNode *root = NULL ; int N ;
int i ;
int num[] ; scanf("%d", &N) ; for ( i = ; i < N ; i++ )
{
scanf("%d", &(num[i] )) ;
} for ( i = ; i < N ; i++ )
{
insert( num[i] , root ) ;
} printf("%d" , root->data) ;
return ;
}
1066. Root of AVL Tree的更多相关文章
- PAT 1066 Root of AVL Tree[AVL树][难]
1066 Root of AVL Tree (25)(25 分) An AVL tree is a self-balancing binary search tree. In an AVL tree, ...
- PAT甲级1066. Root of AVL Tree
PAT甲级1066. Root of AVL Tree 题意: 构造AVL树,返回root点val. 思路: 了解AVL树的基本性质. AVL树 ac代码: C++ // pat1066.cpp : ...
- pat 甲级 1066. Root of AVL Tree (25)
1066. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue An A ...
- PAT 甲级 1066 Root of AVL Tree (25 分)(快速掌握平衡二叉树的旋转,内含代码和注解)***
1066 Root of AVL Tree (25 分) An AVL tree is a self-balancing binary search tree. In an AVL tree, t ...
- PAT甲级:1066 Root of AVL Tree (25分)
PAT甲级:1066 Root of AVL Tree (25分) 题干 An AVL tree is a self-balancing binary search tree. In an AVL t ...
- PTA (Advanced Level) 1066 Root of AVL Tree
Root of AVL Tree An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of ...
- 1066. Root of AVL Tree (25)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT 甲级 1066 Root of AVL Tree
https://pintia.cn/problem-sets/994805342720868352/problems/994805404939173888 An AVL tree is a self- ...
- PAT 1066. Root of AVL Tree (25)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
随机推荐
- [Tommas] dateadd() 函数用法
DATEADD() 函数在日期中添加或减去指定的时间间隔. 语法 DATEADD(datepart,number,date) date 参数是合法的日期表达式.number 是您希望添加的间隔数:对于 ...
- cefSharp 设置运行时系统语言
在使用用CefSharp使用过程中,系统用了很多第三方控件.这些控件很多能够根据浏览器设置的语言来进行控件展示对应语言. 在cefSharp可以设置系统语言,代码如下: CefSharp.Settin ...
- VS2013 单元测试(使用VS2013自带的单元测试)
本文是官方文档的学习笔记,官方文档在这里. 1.打开VS3013,随便建一个解决方案,比如叫:LearnUnitTest,建一个类库项目LearnUnitTest_Bank,该项目中添加一个BankA ...
- Html笔记(一)概述
Html就是超文本标记语言的简写,是最基础的网页语言 Html是通过标签来定义的语言,代码都是由标签所组成 Html代码不用区分大小写 Html代码由<html>开始</html&g ...
- linux 开机自动挂载ntfs盘
1) 查看盘符UUID vellbibi@vell001:~$ sudo blkid [sudo] password for vellbibi: /dev/sda1: UUID="bce9e ...
- java中String、StringBuilder、StringBuffer三者的区别
在Java项目开发中,字符串是最长使用的数据类型,而有关字符串的String.StringBuilder.StringBuffer三者又常常让人分不清楚什么时候该使用哪个. 特此整理一下. Strin ...
- CM5(Cloudera Manager 5) + CDH5(Cloudera's Distribution Including Apache Hadoop 5)的安装详细文档
参考 :http://www.aboutyun.com/thread-9219-1-1.html Cloudera Manager5及CDH5在线(cloudera-manager-installer ...
- PHP字符串操作汇总
PHP开发中常用的字符串操作介绍 -- 简明现代魔法 PHP学习笔记之字符串的简单处理 - RuanJava的专栏 - 博客频道 - CSDN.NET PHP String 函数
- POJ 1657 Distance on Chessboard 简单的计算问题
Distance on Chessboard Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 23096 Accepted ...
- Dom4J对XML的创建、修改、删除等操作
Dom4j也可以很方便完成XML文档的创建.元素的修改.文档的查询遍历等,但dom4j稍比jdom复杂一点,不过在大片文档的情况下dom4j的性能要不jdom好. # 准备 首先,提供相关的jar包 ...