【题目描述】

一个无向连通图,顶点从1编号到N,边从1编号到M。
小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和。
现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。

【输入格式】

第一行是正整数N和M,分别表示该图的顶点数 和边数,接下来M行每行是整数u,v(1≤u,v≤N),表示顶点u与顶点v之间存在一条边。 输入保证30%的数据满足N≤10,100%的数据满足2≤N≤500且是一个无向简单连通图。

【输出格式】

仅包含一个实数,表示最小的期望值,保留3位小数。

【样例输入】

  3  3
2 3
1 2
1 3

【样例输出】

3.333

【提示】

边(1,2)编号为1,边(1,3)编号2,边(2,3)编号为3。

这道题目,先求每个点经过的期望次数,我觉得一般是用正推的,然后贪心。

 #include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
const int N=,M=N*N;
int n,m,e[M][],d[N];
long double A[N][N];
double ans,w[M],x[N];
void Guass_Elimination(){
for(int i=;i<n;i++){
int p=i;
for(int j=i+;j<n;j++)
if(fabs(A[p][i])<fabs(A[j][i]))
p=j;
if(p!=i)
for(int j=;j<=n;j++)
swap(A[i][j],A[p][j]);
long double tmp=A[i][i];
for(int j=;j<=n;j++)
A[i][j]/=tmp;
for(int j=;j<n;j++)
if(i!=j){
tmp=A[j][i];
for(int k=;k<=n;k++)
A[j][k]-=tmp*A[i][k];
}
}
for(int i=;i<n;i++)
x[i]=A[i][n];
}
int main(){
freopen("walk.in","r",stdin);
freopen("walk.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
scanf("%d%d",&e[i][],&e[i][]);
d[e[i][]]+=;d[e[i][]]+=;
}A[][n]=;
for(int i=;i<n;i++)A[i][i]=;
for(int i=;i<=m;i++){
if(e[i][]==n||e[i][]==n)continue;
A[e[i][]][e[i][]]+=-1.0/d[e[i][]];
A[e[i][]][e[i][]]+=-1.0/d[e[i][]];
}
Guass_Elimination();
for(int i=;i<=m;i++){
w[i]+=x[e[i][]]/d[e[i][]];
w[i]+=x[e[i][]]/d[e[i][]];
}
sort(w+,w+m+);
for(int i=;i<=m;i++)
ans+=w[i]*(m-i+);
printf("%.3lf\n",ans);
return ;
}

数学(概率):HNOI2013 游走的更多相关文章

  1. bzoj 3143: [Hnoi2013]游走 高斯消元

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1026  Solved: 448[Submit][Status] ...

  2. [补档][Hnoi2013]游走

    [Hnoi2013]游走 题目 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一 ...

  3. [HNOI2011]XOR和路径 && [HNOI2013]游走

    [HNOI2011]XOR和路径 题目大意 具体题目:戳我 题目: 给定一个n个点,m条边的有重边.有自环的无向图,其中每个边都有一个边权. 现在随机选择一条1到n的路径,路径权值为这条路径上所有边权 ...

  4. BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元

    BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机 ...

  5. P3232 [HNOI2013]游走 解题报告

    P3232 [HNOI2013]游走 题目描述 一个无向连通图,顶点从\(1\)编号到\(N\),边从\(1\)编号到\(M\). 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概 ...

  6. [BZOJ3143][HNOI2013]游走(期望+高斯消元)

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3576  Solved: 1608[Submit][Status ...

  7. 【BZOJ3143】[Hnoi2013]游走 期望DP+高斯消元

    [BZOJ3143][Hnoi2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 ...

  8. bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元

    [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3394  Solved: 1493[Submit][Status][Disc ...

  9. BZOJ3141 Hnoi2013 游走 【概率DP】【高斯消元】*

    BZOJ3141 Hnoi2013 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点 ...

随机推荐

  1. JQuery判断子Iframe 加载完成的技术解决

    当需要我们给当前页面动态创建Iframe子框架的时候,并且同时需要操作子Iframe里的方法的时候,我们发现无法成功实现.这是为什么呢?经小程总结,发现子Iframe还没有来的及加载完成,就去执行里面 ...

  2. 简洁JS 日历控件 支持日期和月份选择

    原文出处 以下这个JS日历控件是我的闲暇之余自己编写的,所有的代码全部在IE7/IE8/Firefox下面测试通过, 而且可以解决被iframe层遮盖的问题.现在只提供两种风格(简洁版和古典版)和两种 ...

  3. jquery值ajaxForm

    参考 http://www.360doc.com/content/13/1001/17/1542811_318406421.shtml

  4. FOR XML PATH实现小九九

    数据库环境:SQL SERVER2008R2 今天我们用SQL实现一下九九乘法表的功能. 实现的逻辑不是很复杂,难点在于怎么把想要的内容从同一列里头拼接到同一行上. 在这里,我们用到了FOR XML ...

  5. MVVM模式应用 之xml文件的读取

    XML如下所示: <?xml version="1.0" encoding="utf-8" ?> <schools> <schoo ...

  6. C#程序:如何创建xml文件以及xml文件的增、删、改、查

    其实今天的这篇博文 ,是对请几天发表的博文的一个总结,只是想把xml文件的增删改查结合起来,这样更容易让初学的朋友理解,废话也不多说了,开始吧! 下面是我把我在vs环境下写的代码ctrl+V然后ctr ...

  7. jquery插件-validate

    1.引入js,css 下载地址:http://plugins.jquery.com/validate/ 2.设置验证规则:input的class添加以下验证属性 3.设置不符合规则的提示信息:添加da ...

  8. Ubuntu14.04不支持U盘exfat格式该如何解决

    转: http://www.jb51.net/os/Ubuntu/275158.html exfat是U盘的文件系统,很多系统都支持exfat格式的使用,但Ubuntu系统并不支持exfat格式,要如 ...

  9. python 小记 整数与小数id

    上图,id A =B id 1.0  c != d 以后少用 带小数后位的数字.调用内存地址不一样

  10. Python 关于正负无穷float(‘inf’)的一些用法

    Python中可以用如下方式表示正负无穷: float("inf"), float("-inf") 利用 inf 做简单加.乘算术运算仍会得到 inf > ...