题目链接:http://poj.org/problem?id=3017

  这题的DP方程是容易想到的,f[i]=Min{ f[j]+Max(num[j+1],num[j+2],......,num[i]) | 满足m的下界<j<=i },复杂度O(n^2),妥妥的TLE。其实很多都决策都是没有必要的,只要保存在满足m的区间内,num值单调递减的的那些决策。如果遍历的话,一个下降的序列会退化到O(n^2),于是用堆来优化。。。堆优化这里,纠结了很久T_T,,,网上很多代码都是直接用set来处理,但是set在erase元素的都是会把相同的元素都除掉,应该是只erase一个元素,因为相同的元素中其它的可能会存在队列中。。。难道是数据弱了?。。。

 //STATUS:C++_AC_1172MS_1352KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef __int64 LL;
typedef unsigned __int64 ULL;
//const
const int N=;
const int INF=0x3f3f3f3f;
const int MOD=,STA=;
const LL LNF=1LL<<;
const double EPS=1e-;
const double OO=1e15;
const int dx[]={-,,,};
const int dy[]={,,,-};
const int day[]={,,,,,,,,,,,,};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End int num[N],q[N];
int n;
LL m,f[N];
multiset<int> sbt; int main()
{
// freopen("in.txt","r",stdin);
int i,j,l,r,p,ok;
LL sum;
while(~scanf("%d%I64d",&n,&m))
{
l=sum=;r=-;
sbt.clear();
ok=;
for(i=p=;i<=n;i++){
scanf("%d",&num[i]);
sum+=num[i];
while(sum>m)sum-=num[p++];
if(p>i){ok=;break;}
while(l<=r && num[i]>=num[q[r]]){
if(l<r)sbt.erase(f[q[r-]]+num[q[r]]);
r--;
}
q[++r]=i;
if(l<r)sbt.insert(f[q[r-]]+num[q[r]]);
while(q[l]<p){
if(l<r)sbt.erase(f[q[l]]+num[q[l+]]);
l++;
}
f[i]=f[p-]+num[q[l]];
if(l<r)f[i]=Min(f[i],(LL)*sbt.begin());
}
for(;i<=n;i++)
scanf("%d",&j); printf("%I64d\n",ok?f[n]:-);
}
return ;
}

POJ-3017 Cut the Sequence DP+单调队列+堆的更多相关文章

  1. poj 3017 Cut the Sequence(单调队列优化DP)

    Cut the Sequence \(solution:\) 这道题出的真的很好,奈何数据水啊! 这道题当时看得一脸懵逼,说二分也不像二分,说贪心也不像贪心,说搜索吧这题数据范围怎么这么大?而且这题看 ...

  2. POJ 3017 Cut the Sequence (单调队列优化DP)

    题意: 给定含有n个元素的数列a,要求将其划分为若干个连续子序列,使得每个序列的元素之和小于等于m,问最小化所有序列中的最大元素之和为多少?(n<=105.例:n=8, m=17,8个数分别为2 ...

  3. poj 3017 Cut the Sequence(单调队列优化 )

    题目链接:http://poj.org/problem?id=3017 题意:给你一个长度为n的数列,要求把这个数列划分为任意块,每块的元素和小于m,使得所有块的最大值的和最小 分析:这题很快就能想到 ...

  4. [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)

    DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...

  5. POJ 3017 DP + 单调队列 + 堆

    题意:给你一个长度为n的数列,你需要把这个数列分成几段,每段的和不超过m,问各段的最大值之和的最小值是多少? 思路:dp方程如下:设dp[i]为把前i个数分成合法的若干段最大值的最小值是多少.dp转移 ...

  6. POJ 3017 Cut the Sequence

    [题目链接] $O(n^2)$ 效率的 dp 递推式:${ dp }_{ i }=min\left( dp_{ j }+\overset { i }{ \underset { x=j+1 }{ max ...

  7. POJ - 3162 Walking Race 树形dp 单调队列

    POJ - 3162Walking Race 题目大意:有n个训练点,第i天就选择第i个训练点为起点跑到最远距离的点,然后连续的几天里如果最远距离的最大值和最小值的差距不超过m就可以作为观测区间,问这 ...

  8. poj3017 Cut the Sequence[平衡树+单调队列优化]

    这里已经讲得很清楚了. 本質上是決策點與區間最大值有一定關係,於是用单调队列来维护决策集合(而不是常规的),然后在决策集合中选取最小值. 然后觉得这题方法还是很重要的.没写平衡树,用优先队列(堆)来维 ...

  9. 【POJ 2823】Sliding Window(单调队列/堆)

    BUPT2017 wintertraining(16) #5 D POJ - 2823 题意 给定n,k,求滑窗[i,i+k-1]在(1<=i<=n)的最大值最小值. 题解 单调队列或堆. ...

随机推荐

  1. Python设计模式——建造者模式

    需求,画人物,要求画一个人的头,左手,右手,左脚,右脚和身体,画一个瘦子,一个胖子 不使用设计模式 #encoding=utf-8 __author__ = 'kevinlu1010@qq.com' ...

  2. poj 2175 Evacuation Plan 最小费用流判定,消圈算法

    题目链接 题意:一个城市有n座行政楼和m座避难所,现发生核战,要求将避难所中的人员全部安置到避难所中,每个人转移的费用为两座楼之间的曼哈顿距离+1,题目给了一种方案,问是否为最优方案,即是否全部的人员 ...

  3. Oracle表添加主键、外键

    1.创建表的同时创建主键约束 (1)无命名 create table student ( studentid int primary key not null, studentname varchar ...

  4. 【intellij】异常信息汇总

    Application Server was not connected before run configuration stop, reason: javax.management.Instanc ...

  5. AJAX技术的核心

    //创建一个XMLHttpRequest对象 ,利用此对象与服务器进行通信 是AJAX技术的核心 /** * 获取XmlHttpRequest对象 */ function getXMLHttpRequ ...

  6. windows store app Lifecycle

    1.Activated 2.Suspended 3.Resumed 4.Terminated 对应的 js代码: (function () { "use strict"; WinJ ...

  7. Spring MVC 注解和XML的区别

      注解与XML配置的区别 注解:是一种分散式的元数据,与源代码紧绑定. xml:是一种集中式的元数据,与源代码无绑定. 因此注解和XML的选择上可以从两个角度来看:分散还是集中,源代码绑定/无绑定. ...

  8. oracle srvctl 命令

    SRVCTL命令可以控制RAC数据库中的instance,listener以及services. 通常SRVCTL在ORACLE用户下执行.下面我们来介绍srvctl命令. 1.通过SRVCTL命令来 ...

  9. C#.NET连接mysql方法

    C#访问MySQL数据库的方法 (1)首先需要下载C#访问MySQL数据库的ADO.NET驱动程序 下载地址为: http://dev.mysql.com/downloads/connector/ne ...

  10. const变量的存储区及修改权限

    转自const变量的存储区及修改权限 [cpp] view plaincopy const int a = 1; int *p = const_cast<int*>(&a); *p ...