同上面几道题差不多,需要先求出来内核,然后直接用叉积求出来面积即可。

代码如下:

#include<iostream>
#include<string.h>
#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<queue>
using namespace std; const int MAXN = ;
const int oo = 1e9+;
const double EPS = 1e-; int Sign(double t)
{
if(t > EPS)
return ;
if(fabs(t) < EPS)
return ;
return -;
} struct Point
{
double x, y;
Point(double x=, double y=):x(x),y(y){}
Point operator - (const Point &t)const{
return Point(x-t.x, y-t.y);
}
double operator ^(const Point &t)const{
return x*t.y - y*t.x;
} }p[MAXN], in[MAXN];
struct Segment
{
Point S, E;
double a, b, c;
Segment(Point S=, Point E=):S(S), E(E){
a = S.y - E.y;
b = E.x - S.x;
c = E.x*S.y - S.x*E.y;
}
Point crossNode(const Segment &t)const{
Point res; res.x = (c*t.b-t.c*b) / (a*t.b-t.a*b);
res.y = (c*t.a-t.c*a) / (b*t.a-t.b*a); return res;
}
int Mul(const Point &t)
{///用叉积判断方向
return Sign((E-S)^(t-S));
}
};
int CutPoly(Segment L, int N)
{
Point tmp[MAXN];
int cnt = ; for(int i=; i<=N; i++)
{
if(L.Mul(in[i]) <= )
tmp[++cnt] = in[i];
else
{
if(L.Mul(in[i-]) < )///求出交点
tmp[++cnt] = L.crossNode(Segment(in[i-],in[i]));
if(L.Mul(in[i+]) < )
tmp[++cnt] = L.crossNode(Segment(in[i],in[i+]));
}
} for(int i=; i<=cnt; i++)
in[i] = tmp[i];
in[] = in[cnt], in[cnt+] = in[]; return cnt;
} int main()
{
int T; scanf("%d", &T); while(T--)
{
int N, M;
double s=; scanf("%d", &N); for(int i=; i<=N; i++)
{
scanf("%lf%lf", &p[i].x, &p[i].y);
in[i] = p[i];
}
if(s < )
{
for(int i=; i<=N/; i++)
{
swap(p[i], p[N-i+]);
swap(in[i], in[N-i+]);
}
} in[] = p[] = p[N];
in[N+] = p[N+] = p[];
M = N; for(int i=; i<=N; i++)
M = CutPoly(Segment(p[i],p[i+]), M); for(int i=; i<=M; i++)
{
s += in[i].x*in[i+].y - in[i].y*in[i+].x;
} printf("%.2f\n", fabs(s)/2.0);
} return ;
}

Art Gallery - POJ 1279(求内核面积)的更多相关文章

  1. POJ 1279 Art Gallery 半平面交求多边形核

    第一道半平面交,只会写N^2. 将每条边化作一个不等式,ax+by+c>0,所以要固定顺序,方便求解. 半平面交其实就是对一系列的不等式组进行求解可行解. 如果某点在直线右侧,说明那个点在区域内 ...

  2. poj 1279 Art Gallery - 求多边形核的面积

    /* poj 1279 Art Gallery - 求多边形核的面积 */ #include<stdio.h> #include<math.h> #include <al ...

  3. POJ 1279 Art Gallery 半平面交/多边形求核

    http://poj.org/problem?id=1279 顺时针给你一个多边形...求能看到所有点的面积...用半平面对所有边取交即可,模版题 这里的半平面交是O(n^2)的算法...比较逗比.. ...

  4. poj 1279 -- Art Gallery (半平面交)

    鏈接:http://poj.org/problem?id=1279 Art Gallery Time Limit: 1000MS   Memory Limit: 10000K Total Submis ...

  5. poj 1279 Art Gallery (Half Plane Intersection)

    1279 -- Art Gallery 还是半平面交的问题,要求求出多边形中可以观察到多边形所有边的位置区域的面积.其实就是把每一条边看作有向直线然后套用半平面交.这题在输入的时候应该用多边形的有向面 ...

  6. poj 1279 半平面交核面积

    Art Gallery Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6668   Accepted: 2725 Descr ...

  7. 【POJ】【2068】Art Gallery

    计算几何/半平面交 裸的半平面交,关于半平面交的入门请看神犇博客:http://blog.csdn.net/accry/article/details/6070621 然而代码我是抄的proverbs ...

  8. POJ 1151 / HDU 1542 Atlantis 线段树求矩形面积并

    题意:给出矩形两对角点坐标,求矩形面积并. 解法:线段树+离散化. 每加入一个矩形,将两个y值加入yy数组以待离散化,将左边界cover值置为1,右边界置为2,离散后建立的线段树其实是以y值建的树,线 ...

  9. Area - POJ 1654(求多边形面积)

    题目大意:从原点开始,1-4分别代表,向右下走,向右走,向右上走,向下走,5代表回到原点,6-9代表,向上走,向左下走,向左走,向左上走.求出最后的多边形面积. 分析:这个多边形面积很明显是不规则的, ...

随机推荐

  1. HTML -- 标签记录(随着学习不断更新)

    此篇博文主要记录一些标签的常用属性 Font标签 size:字体大小 color:颜色 face:字体 <!DOCTYPE html> <html> <head> ...

  2. 【产品体验】eyepetizer开眼

    第一次写博客,内心还有点小激动呢~~本人产品新人,学习中,希望大家多多指教!  先来两张开眼的界面图坐镇——         开眼简介: appetizer for eyes 即 eyepetizer ...

  3. join的一对多,去除重复,排序优先的group方法

    想将问题列表按照最新回答来排列.但问题和回答是分拆在两张表来存放的.所以,要完成上述需求,需从主表“问题”取显示数据,但是得按照次表(回答)的更新日期来排序. 用join来做,始终无法去除重复,折腾了 ...

  4. "Money, Money, Money"

    acdream1408:http://115.28.76.232/problem?pid=1408 题意:给你一个x,让你构造a,b,是的na+bm可以组成大于x的所有的数.a>1,b>1 ...

  5. 在eclipse中将项目发布到tomcat的root目录

    (1)设置项目上下文,右击项目-properties   >Web Page Edit

  6. Codeforces Round #238 (Div. 1)

    感觉这场题目有种似曾相识感觉,C题还没看,日后补上.一定要坚持做下去. A Unusual Product 题意: 给定一个n*n的01矩阵,3种操作, 1 i 将第i行翻转 2 i 将第i列翻转 3 ...

  7. code forces Jeff and Periods

    /* * c.cpp * * Created on: 2013-10-7 * Author: wangzhu */ #include<cstdio> #include<iostrea ...

  8. *[topcoder]TheTree

    http://community.topcoder.com/stat?c=problem_statement&pm=12746&rd=15703 这道题有意思.给了树的根和每层节点的个 ...

  9. 解决VC++6.0 无法打开、无法添加工程文件

    在windows系统下,经常会遇到这样的问题:点击VC++6.0 的[文件]下的[打开]无法操作,并且无法向工程添加文件,下面详细介绍一下解决方案? 工具/原料 VC++6.0 修复工具:FileTo ...

  10. 使用Timer执行定时任务

    一.Timer概述 在Java开发中,会碰到一些需要定时或者延时执行某些任务的需求,这时,我们可以使用Java中的Timer类实现. 二.Timer介绍 Timer是一个定时器类,通过该类可以为指定的 ...