同上面几道题差不多,需要先求出来内核,然后直接用叉积求出来面积即可。

代码如下:

#include<iostream>
#include<string.h>
#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<queue>
using namespace std; const int MAXN = ;
const int oo = 1e9+;
const double EPS = 1e-; int Sign(double t)
{
if(t > EPS)
return ;
if(fabs(t) < EPS)
return ;
return -;
} struct Point
{
double x, y;
Point(double x=, double y=):x(x),y(y){}
Point operator - (const Point &t)const{
return Point(x-t.x, y-t.y);
}
double operator ^(const Point &t)const{
return x*t.y - y*t.x;
} }p[MAXN], in[MAXN];
struct Segment
{
Point S, E;
double a, b, c;
Segment(Point S=, Point E=):S(S), E(E){
a = S.y - E.y;
b = E.x - S.x;
c = E.x*S.y - S.x*E.y;
}
Point crossNode(const Segment &t)const{
Point res; res.x = (c*t.b-t.c*b) / (a*t.b-t.a*b);
res.y = (c*t.a-t.c*a) / (b*t.a-t.b*a); return res;
}
int Mul(const Point &t)
{///用叉积判断方向
return Sign((E-S)^(t-S));
}
};
int CutPoly(Segment L, int N)
{
Point tmp[MAXN];
int cnt = ; for(int i=; i<=N; i++)
{
if(L.Mul(in[i]) <= )
tmp[++cnt] = in[i];
else
{
if(L.Mul(in[i-]) < )///求出交点
tmp[++cnt] = L.crossNode(Segment(in[i-],in[i]));
if(L.Mul(in[i+]) < )
tmp[++cnt] = L.crossNode(Segment(in[i],in[i+]));
}
} for(int i=; i<=cnt; i++)
in[i] = tmp[i];
in[] = in[cnt], in[cnt+] = in[]; return cnt;
} int main()
{
int T; scanf("%d", &T); while(T--)
{
int N, M;
double s=; scanf("%d", &N); for(int i=; i<=N; i++)
{
scanf("%lf%lf", &p[i].x, &p[i].y);
in[i] = p[i];
}
if(s < )
{
for(int i=; i<=N/; i++)
{
swap(p[i], p[N-i+]);
swap(in[i], in[N-i+]);
}
} in[] = p[] = p[N];
in[N+] = p[N+] = p[];
M = N; for(int i=; i<=N; i++)
M = CutPoly(Segment(p[i],p[i+]), M); for(int i=; i<=M; i++)
{
s += in[i].x*in[i+].y - in[i].y*in[i+].x;
} printf("%.2f\n", fabs(s)/2.0);
} return ;
}

Art Gallery - POJ 1279(求内核面积)的更多相关文章

  1. POJ 1279 Art Gallery 半平面交求多边形核

    第一道半平面交,只会写N^2. 将每条边化作一个不等式,ax+by+c>0,所以要固定顺序,方便求解. 半平面交其实就是对一系列的不等式组进行求解可行解. 如果某点在直线右侧,说明那个点在区域内 ...

  2. poj 1279 Art Gallery - 求多边形核的面积

    /* poj 1279 Art Gallery - 求多边形核的面积 */ #include<stdio.h> #include<math.h> #include <al ...

  3. POJ 1279 Art Gallery 半平面交/多边形求核

    http://poj.org/problem?id=1279 顺时针给你一个多边形...求能看到所有点的面积...用半平面对所有边取交即可,模版题 这里的半平面交是O(n^2)的算法...比较逗比.. ...

  4. poj 1279 -- Art Gallery (半平面交)

    鏈接:http://poj.org/problem?id=1279 Art Gallery Time Limit: 1000MS   Memory Limit: 10000K Total Submis ...

  5. poj 1279 Art Gallery (Half Plane Intersection)

    1279 -- Art Gallery 还是半平面交的问题,要求求出多边形中可以观察到多边形所有边的位置区域的面积.其实就是把每一条边看作有向直线然后套用半平面交.这题在输入的时候应该用多边形的有向面 ...

  6. poj 1279 半平面交核面积

    Art Gallery Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6668   Accepted: 2725 Descr ...

  7. 【POJ】【2068】Art Gallery

    计算几何/半平面交 裸的半平面交,关于半平面交的入门请看神犇博客:http://blog.csdn.net/accry/article/details/6070621 然而代码我是抄的proverbs ...

  8. POJ 1151 / HDU 1542 Atlantis 线段树求矩形面积并

    题意:给出矩形两对角点坐标,求矩形面积并. 解法:线段树+离散化. 每加入一个矩形,将两个y值加入yy数组以待离散化,将左边界cover值置为1,右边界置为2,离散后建立的线段树其实是以y值建的树,线 ...

  9. Area - POJ 1654(求多边形面积)

    题目大意:从原点开始,1-4分别代表,向右下走,向右走,向右上走,向下走,5代表回到原点,6-9代表,向上走,向左下走,向左走,向左上走.求出最后的多边形面积. 分析:这个多边形面积很明显是不规则的, ...

随机推荐

  1. Matlab使用心得

    1..*和*的区别 .*只能用于两个同型矩阵相乘,且是相对应的元素做乘法运算,其运算规则和我们线性代数里的乘法规则是不一样的:而*用于两个矩阵相乘,如mxn,nxk两个矩阵相乘,它的运算规则和线性代数 ...

  2. Classifying plankton with deep neural networks

    Classifying plankton with deep neural networks The National Data Science Bowl, a data science compet ...

  3. ubuntu下的翻译软件goldendict

    转自ubuntu下的翻译软件 看着一些API虽然能看懂一个大概,但总想知道每个单词的意思.问题是英语水平有限,所以只能来找一些翻译软件,像windows下来用的有道估计是不行了(也没去试到定行不行), ...

  4. HDU4524+水题

    简单. #include<stdio.h> #include<string.h> ; int a[ maxn ]; int main(){ int ca; scanf(&quo ...

  5. 关于CPU亲和性的测试

    今天看到运维的同事在配置nginx的CPU亲和性时候,运维同事说他在所有的机器上都是按照8核的方式来配置worker进程的CPU亲和性的. 但我觉得就是有点不太对劲,就查了一下nginx的处理work ...

  6. Android 关于HttpClient上传中文乱码的解决办法

    使用过HttpClient的人都知道可以通过addTextBody方法来添加要上传的文本信息,但是,如果要上传中文的话,或还有中文名称的文件会出现乱码的问题,解决办法其实很简单: 第一步:设置Mult ...

  7. 归纳决策树ID3(Java实现)

    先上问题吧,我们统计了14天的气象数据(指标包括outlook,temperature,humidity,windy),并已知这些天气是否打球(play).如果给出新一天的气象指标数据:sunny,c ...

  8. POJ 2513 Colored Sticks 解题报告

    第一次接触欧拉回路.虽然在离散数学里学过,敲代码还是第一次. 本题是说端点颜色相同的两根木棒可连接,能否将所有的木棒连成一条直线. 将颜色视为节点v,将木棒视为边e,构成图G.如果能找到一条一笔画的路 ...

  9. 【C++】命令行Hangman #2015年12月15日 00:20:27

    增加了可以在构造Hangman对象时通过传入参数设定“最大猜测次数”的功能.少量修改.# 2015年12月15日 00:20:22 https://github.com/shalliestera/ha ...

  10. apache配置虚拟主机的三种方式

    Apache 配置虚拟主机三种方式   一.基于IP 1. 假设服务器有个IP地址为192.168.1.10,使用ifconfig在同一个网络接口eth0上绑定3个IP: [root@localhos ...