这篇文章着力来讨论线段相交这一个问题。

给出两条线段,如何判断这两条线段相交?

如果这两条线段相交,如何求其交点?

线段相交问题通常由于其繁杂的情况种类而让人避而远之,在这里希望通过笔者的简化讨论希望帮读者的思路进行一下梳理。

首先我们尝试画几个几何图像来找一下线段相交的一些不同的情况,这里需要注意,可能有读者会好奇,这些直观上来看没什么差别的相交情况,我们为什么为认为他们是不同的呢?答案是,这里我们需要将几何特征用代数表达是进行判断,因此不同的几何特征虽然都表示线段相交,但是对应的代数表达式不一定相同。

简单的函数代码如下:

//一般情况线段相交的判断

bool SegmentIntersects(Point a1 , Point a2 , Point b1 , Point b2)

{

    double c1 = Cross(a2-a1 , b1-a1);

    double c2 = Cross(a2-a1 , b2-a1);

    double c3 = Cross(b2-b1 , a1-b1);

    double c4 = Cross(b2-b1 , a2-b1);

      if(dcmp(c1)*dcmp(c2) ==  && dcmp(c3)*dcmp(c4) == )

      {

            if(OnSegment(Point a1 , Point b1 ,Point b2) || OnSegment(Point a2 , Point b1 ,Point b2)||a1==b1 || a1 == b2)

                  return true;

            else

                  return false;

      }

      return if(dcmp(c1)*dcmp(c2) <=  && dcmp(c3)*dcmp(c4) <= )

}

《算法问题实战策略》-chaper15-计算几何-线段相交的更多相关文章

  1. 算法问题实战策略 PICNIC

    下面是另一道搜索题目的解答过程题目是<算法问题实战策略>中的一题oj地址是韩国网站 连接比较慢 https://algospot.com/judge/problem/read/PICNIC ...

  2. 《算法问题实战策略》-chaper7-穷举法

    关于这一章节<算法实战策略>有一段概述问题,我认为对于编程人员来说非常有价值,故在这里进行如下的摘抄: 构想算法是很艰难的工作.相比大家都经历过,面对复杂的要求只是傻乎乎地盯着显示器,或者 ...

  3. 《算法问题实战策略》-chaper13-数值分析

    这一章节主要介绍我们在进行数值分析常用的二分.三分和一个近似求解区间积分的辛普森法. 首先介绍二分. 其实二分的思想很好理解并且笔者在之前的一些文章中也有所渗透,对于二次函数甚至单元高次函数的零点求解 ...

  4. POJ2284 That Nice Euler Circuit (欧拉公式)(计算几何 线段相交问题)

                                                          That Nice Euler Circuit Time Limit: 3000MS   M ...

  5. 《算法问题实战策略》-chaper32-网络流

    基本的网络流模型: 在图论这一块初步的应用领域中,两个最常见的关注点,其一时图中的路径长度,也就是我们常说的的最短路径问题,另一个则是所谓的“流问题”. 流问题的基本概念: 首先给出一张图. 其实所谓 ...

  6. POJ 3347 Kadj Squares (计算几何+线段相交)

    题意:从左至右给你n个正方形的边长,接着这些正方形都按照旋转45度以一角为底放置坐标轴上,最左边的正方形左端点抵住y轴,后面的正方形依次紧贴前面所有正方形放置,问从上方向下看去,有哪些正方形是可以被看 ...

  7. 《算法问题实战策略》——chaper9——动态规划法技巧

    Q1: 数字游戏: 两个人(A.B)用n个整数排成的一排棋盘玩游戏,游戏从A开始,每个人有如下操作: (1)    拿走棋盘最右侧或者最左侧的棋子,被拿走的数字从棋盘中抹掉. (2)    棋盘中还剩 ...

  8. 《算法问题实战策略》-chaper8-动态规划法

    Q1:偶尔在电视上看到一些被称为“神童”的孩子们背诵小数点以后几万位的圆周率.背诵这么长的数字,可利用分割数字的方法.我们用这种方法将数字按照位数不等的大小分割后再背诵. 分割形式如下: 所有数字都相 ...

  9. 《算法问题实战策略》-chaper21-树的实现和遍历

    这一章节开始介绍一个数据结构中的一个基本概念——树. 我们从数据结构的解读来解释树结构的重要性,现实世界的数据除了最基本的线性结构(我们常用队列.数组和链表等结构表征),还有一个重要的特性——层级结构 ...

随机推荐

  1. Windows下的进程【一】

    什么是进程?进程就是一个正在运行的程序的实例,由两部分组成: 内核对象.操作系统用内核对象对进程进行管理,内核对象是操作系统保存进程统计信息的地方. 地址空间.其中包含所有可执行文件或DLL模块的代码 ...

  2. SQLServer2008找出所有包含172.17.224.40字样的存储过程

    SQLServer2008 找出所有包含172.17.224.40的存储过程   select distinct name from syscomments a,sysobjects b where ...

  3. CI 自动操作日志

    在控制器中,继承一个总控制器,MY_Controller,让其他集成的控制器,继承my控制器 在MY_Controller控制器中,重写构造方法, 代码如下,测试pass! class MY_Cont ...

  4. ios 用LLDB查看模拟器文件路径以及一些常用的命令

    我看网络上有好多有关lldb调试命令的介绍,我都看了一遍,都没有这个方法,所以我在这里补充出来,帮助需要的人. 另外附上一些 实用LLDB命令 我们可以使用e命令定义变量 (lldb) e NSStr ...

  5. 1 Yoga3 系统装机总结.

    1- Yoga 3 存在串口驱动不安装, 那么触摸屏不能用的情况, 打破了以往对触摸屏-"纯外设" 的设想, 与系统有关!!! 2- 系统安装总结: 1) BIOS中设置UEFI ...

  6. QT UI 如果发现布局之后,button不在父widget的中间

    如果发现布局之后,button不在父widget的中间: 调整父widget的布局参数:

  7. 读书笔记之 - javascript 设计模式 - 门面模式

    门面模式有俩个作用: 简化类的接口 消除类与使用它的客户代码之间的耦合 在javascript中,门面模式常常是开发人员最亲密的朋友.它是几乎所有javascript库的核心原则,门面模式可以使库提供 ...

  8. JS中的 this

    JS中的 this 变化多端,似乎难以捉摸,但实际上对 this 的解读,还是有一定规律的. 分析this,该如何下手呢?下面有一个函数 function show(){ alert(this); } ...

  9. php Imagick库readImage()报Postscript delegate failed 解决方法(失效)

    需要安装 ghostscript http://www.ghostscript.com/download/gsdnld.html

  10. JS判断浏览器类型以及版本号

    <script type="text/javascript">        (function(){            window.nav={};       ...